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STRUCTURE RELATIONS OF CLASSICAL MULTIPLE

ORTHOGONAL POLYNOMIALS BY

A GENERATING FUNCTION

Dong Won Lee

Abstract. In this paper, we will find some recurrence relations of classi-
cal multiple OPS between the same family with different parameters us-
ing the generating functions, which are useful to find structure relations
and their connection coefficients. In particular, the differential-difference
equations of Jacobi-Piñeiro polynomials and multiple Bessel polynomials
are given.

1. Introduction

Let r ≥ 2 be a fixed positive integer, ~n = (n1, n2, . . . , nr) ∈ N
r
0 a multi-

index, and ei = (0, . . . , 1, . . . , 0) the i-th standard unit vector in R
r with e =

∑r
i=1 ei. For any vector ~α = (α1, α2, . . . , αr) and t = (t1, t2, . . . , tr), we let

|t| = t1 + t2 + · · ·+ tr and the product α · t = α1t1 + α2t2 + · · ·+ αrtr.
A sequence {P~n(x)}

∞
|~n|=0 of polynomials is called a multiple orthogonal poly-

nomial system (multiple OPS) if

(i) deg(P~n) = |~n|;
(ii) there exist r positive weights wi such that for i = 1, 2, . . . , r,

∫ ∞

−∞

xkP~n(x)wi(x)dx = 0 for k = 0, 1, 2, . . . , ni − 1.

The multiple OPS was originated from the paper of Angelesco in dealing with
simultaneous Padé approximants ([1]). These families of polynomials attracted
big interest in the area of simultaneous Padé approximation, random matrix,
asymptotics, number theory, and so on (see [6, 7, 9, 10, 11] for recent relevant
references and therein).

Recently many results are obtained on so-called classical multiple OPS’s
whose orthogonalizing weights wi are classical. More precisely, they are multi-
ple Hermite polynomials, multiple Laguerre I polynomials, multiple Laguerre
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II polynomials, Jacobi-Piñeiro polynomials, and multiple Bessel polynomials
(see [2, 3, 16, 21] and references therein).

Among the classical multiple OPS’s the generating functions are developed
for three families of them, which are the case of multiple Hermite polynomials,
multiple Laguerre I polynomials, and multiple Laguerre II polynomials ([13]).
For these multiple OPS’s the orthogonalizing weights and the generating func-
tions are as follow.

(a) multiple Hermite polynomials {H
(~α)
~n (x)}∞|~n|=0: The orthogonalizing we-

ights are wi(x) = e
δ
2x

2+αix on (−∞,∞), where δ < 0 and αi 6= αj for
i 6= j. The generating function is

G(α)(x, t) = eδx|t|+
δ
2 |t|

2+|~α·t|,

that means for x ∈ R and ti ∈ R for i = 1, 2, . . . , r,

G(α)(x, t) =

∞
∑

~n=0

H
(~α)
~n (x)

t~n

~n!
.

(b) multiple Laguerre I polynomials {L
(~α;β)
~n (x)}∞|~n|=0: The orthogonalizing

weights are wi(x) = xαieβx on (0,∞), where αi > −1, β < 0, and
αi − αj /∈ Z for i 6= j. The generating function is

G(~α;β)(x, t) =

r
∏

i=1

1

(1− ti)αi+1
e
βx

(

1∏r
i=1

(1−ti)
−1

)

,

that means for x ∈ (0,∞) and |ti| < 1 for i = 1, 2, . . . , r,

G(~α;β)(x, t) =
∞
∑

~n=0

L
(~α;β)
~n (x)

t~n

~n!
.

(c) multiple Laguerre II polynomials {L
(α;~β)
~n (x)}∞|~n|=0: The orthogonalizing

weights are wi(x) = xαeβix on (0,∞), where α > −1, βi < 0, and
βi 6= βj for i 6= j. The generating function is

G(α;~β)(x, t) =
1

(1− |t|)α+1
e

|~β·t|x
1−|t| ,

that means for x ∈ (0,∞) and |t| < 1,

G(α;~β)(x, t) =

∞
∑

~n=0

L
(α;~β)
~n (x)

t~n

~n!
.

Here, we used multi-index notations ~n! = n1!n2! · · ·nr!, t
~n = tn1

1 tn2
2 · · · tnr

r , and
∑∞

~n=0 =
∑∞

n1=0

∑∞
n2=0 · · ·

∑∞
nr=0.

By the generating function, many properties of multiple Hermite polynomi-
als and the multiple Laguerre polynomials were developed such as differential-
difference relation and differential equations (see [13]).
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On the other hand, recurrence relations of Jacobi-Piñeiro polynomials and
multiple Bessel polynomials are not rigorously studied until now. In order to
get their recurrence relations, we need their generating functions. Recently
we found the generating function for them in the case of r = 2 by Lagrange
expansion method (see [14]). More precisely, the author proved:

(d) Jacobi-Piñeiro polynomials {P
(α1,α2;α)
n1,n2 (x)}∞n1+n2=0: The orthogonal-

izing weights are wi(x) = xαi(x − 1)α (i = 1, 2) on (0, 1), where
α1, α2, α > −1 and α1 − α2 /∈ Z. The generating function is

G(α1,α2;α)(x, t) =
1

[(1 + t1 − 2t1z)(1 + t2 − 2t2z)− t1t2z2]

(1 + t1 − t1z)
−α1(1 + t2 − t2z)

−α2

[(1 − t1z)(1− t2z)− t1t2z]α
,

that means for |t1| < 1, |t2| < 1, and x ∈ (0, 1),

G(α1,α2;α)(x, t) =

∞
∑

n1=0

∞
∑

n2=0

P (α1,α2;α)
n1,n2

(x)
tn1
1 tn2

2

n1!n2!
,

where z is a solution of z(1+ t1 − t1z)(1 + t2 − t2z) = x with z → x as
t1, t2 → 0.

(e) multiple Bessel polynomials {B
(α1,α2;γ)
n1,n2 (x)}∞n1+n2=0: The orthogonal-

izing weights are wi(x) = xαie
γ
x (i = 1, 2) on the unit circle in complex

plane, where α1, α2 > −1, γ 6= 0, and α1 − α2 /∈ Z. The generating
function is

G(α1,α2;γ)(x, t) =
(1− t1z)

−α1(1− t2z)
−α2

(1− 2t1z)(1− 2t2z)− t1t2z2
eγ(

1
z
− 1

x
),

that means for |t1| < 1, |t2| < 1, and |x| = 1 on complex plane,

G(α1,α2;γ)(x, t) =
∞
∑

n1=0

∞
∑

n2=0

B(α1,α2;γ)
n1,n2

(x)
tn1
1 tn2

2

n1!n2!
,

where z is a solution of z(1−t1z)(1−t2z) = x with z → x as t1, t2 → 0.

There are tremendous recurrence relations for orthogonal polynomials such
as three term recurrence relation, differential-difference equation, and so on.
We refer to [8, 17, 18]. The recurrence relation plays a key role in applications of
orthogonal polynomials in area of rational approximation, quadrature formula,
special functions, combinatorics, differential equations and so on.

For multiple OPS’s, many recurrence relations are obtained as an extension
of orthogonal polynomials and so they would be used in many areas of multiple
OPS’s (see [4, 5, 12, 20] and references therein). Most of these papers treated
the recurrence relations with the same polynomials or differential-difference
relation of the same polynomials. Comparing to ordinary classical OPS, we
can deduce that the recurrence relations of the same family of classical multiple
OPS with different parameter will also play an important role in investigating
the properties of multiple OPSs.

In this paper, we find some recurrence relations of classical multiple OPS be-
tween the same family with different parameters using the generating function,
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which are useful to find the structure relations and their connection coefficients.
In particular, the differential-difference equations of Jacobi-Piñeiro polynomials
and multiple Bessel polynomials are given.

2. Multiple Hermite polynomials

Using the identities of G(~α)(x, t) for multiple Hermite polynomials

∂

∂x
G(~α)(x, t) = δ|t|G(~α)(x, t)

and
∂

∂ti
G(~α)(x, t) = (δx+ αi)G

(~α)(x, t) +
∂

∂x
G(~α)(x, t),

the author found ([13, Theorem 2.4]) differential-difference equations

d

dx
H

(~α)
~n (x) = δ

r
∑

j=1

H
(~α)
~n−ej

(x) = H
(~α)
~n+ei

(x) − (δx+ αi)H
(α)
~n (x), i = 1, 2, . . . , r.

These relations can be regarded as generalizations of the relation

H ′
n(x) = nHn−1(x) = 2xHn(x)− 2Hn+1(x),

where {Hn(x)}
∞
n=0 is the monic Hermite polynomials orthogonal with respect

to w(x) = e−x2

on (−∞,∞).
By a simple calculation we have an identity

(2.1) G(~α+ei)(x, t) = etiG(~α)(x, t),

from which a new recurrence relation for multiple Hermite polynomials imme-
diately follows.

Theorem 2.1. Let {H
(~α)
~n (x)}∞|~n|=0 be the multiple Hermite polynomials. Then

we have for i = 1, 2, . . . , r,

H
(~α+ei)
~n (x) =

ni
∑

j=0

(

ni

j

)

H
(α)
~n−jei

(x).

Proof. From the definition of generating function, we have for i = 1, 2, . . . , r,

(2.2) G(~α+ei)(x, t) =
∞
∑

~n=0

H
(~α+ei)
~n (x)

t~n

~n!
.

On the other hand,

etiG(~α)(x, t) =





∞
∑

j=0

tji
j!





(

∞
∑

~n=0

H
(~α)
~n (x)

t~n

~n!

)

=
∑

′





∞
∑

ni=0

∞
∑

j=0

H
(~α)
~n (x)

tni+j
i

ni!j!





tn1
1 · · · t

ni−1

i−1 t
ni+1

i+1 · · · tnr
r

n1! · · ·ni−1!ni+1! · · ·nr!
,
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where
∑

′ :=
∑∞

n1=0

∑∞
n2=0 · · ·

∑∞
ni−1=0

∑∞
ni+1=0 · · ·

∑∞
nr=0. By change of

variables we have
∞
∑

ni=0

∞
∑

j=0

H
(~α)
~n (x)

tni+j
i

ni!j!
=

∞
∑

ni=0

ni
∑

j=0

H
(~α)
~n−jei

(x)
tni

i

(ni − j)!j!

=

∞
∑

ni=0

ni
∑

j=0

(

ni

j

)

H
(~α)
~n−jei

(x)
tni

i

ni!
,

so that

(2.3) etiG(~α)(x, t) =

∞
∑

~n=0

ni
∑

j=0

(

ni

j

)

H
(~α)
~n−jei

(x)
t~n

~n!
.

From the equation (2.1), the conclusion follows by comparing the coefficients
of (2.2) and (2.3). �

In particular, if r = 2, then

H(α1+1,α2)
n1,n2

(x) =

n1
∑

j=0

(

n1

j

)

H
(α1,α2)
n1−j,n2

(x)

and

H(α1,α2+1)
n1,n2

(x) =

n2
∑

j=0

(

n2

j

)

H
(α1,α2)
n1,n2−j(x).

Applying Theorem 2.1 iteratively we obtain

H
(~α+e)
~n (x) =

~n
∑

~k=0

(

~n
~k

)

H
(~α)
~n−

∑
r
j=1 kjej

(x),

where ~k = (k1, k2, . . . , kr). Here, we used the notations
∑~n

~k=0 =
∑n1

k1=0

∑n2

k2=0

· · ·
∑nr

kr=0 and
(

~n
~k

)

=
(

n1

k1

)(

n2

k2

)

· · ·
(

nr

kr

)

.
The recurrence relation in Theorem 2.1 is quite interesting because we could

not find a similar relation for Hermite polynomials. Hence, the relation is a
new property that distinguishes multiple Hermite polynomials from Hermite
polynomials.

3. Multiple Laguerre I polynomials

Using the identities of G(~α;β)(x, t) for multiple Laguerre I polynomials

∂

∂x
G(~α;β)(x, t) = β

(

1
∏r

j=1(1 − tj)
− 1

)

G(~α;β)(x, t)

and

(3.1)
∂

∂ti
G(~α;β)(x, t) =

βx+ αi + 1

1− ti
G(~α;β)(x, t) +

x

1− ti

∂

∂x
G(~α;β)(x, t),
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the author found ([13, Theorem 2.7]) differential-difference equations

d

dx
L
(~α;β)
~n (x) = β

(

L
(~α+e;β)
~n (x)− L

(~α;β)
~n (x)

)

and for i = 1, 2, . . . , r,

(3.2) L
(~α;β)
~n+ei

(x) = (βx+ αi + 1)L
(~α+ei;β)
~n (x) + x

d

dx
L
(~α+ei;β)
~n (x).

These equations can be regarded as a generalization of the relations

d

dx
L(α)
n (x) = L(α)

n (x)− L(α+1)
n (x)

and

L
(α)
n+1(x) = (x − α− 1)L(α+1)

n (x) − x
d

dx
L(α+1)
n (x),

where {L
(α)
n (x)}∞n=0 is the monic Laguerre polynomials orthogonal with respect

to w(x) = xαe−x on (0,∞).
For a new recurrence relation for the multiple Laguerre I polynomials we use

the identity

G(~α+ei;β)(x, t) =
1

1− ti
G(~α;β)(x, t)

or equivalently

(3.3) G(~α;β)(x, t) = (1− ti)G
(~α+ei;β)(x, t).

Theorem 3.1. Let {L
(~α;β)
~n (x)}∞|~n|=0 be the multiple Laguerre I polynomials.

Then we have for i = 1, 2, . . . , r,

(3.4) L
(~α;β)
~n (x) = L

(~α+ei;β)
~n (x)− niL

(~α+ei;β)
~n−ei

(x)

and

(3.5) L
(~α+ei;β)
~n (x) =

ni
∑

j=0

ni!

(ni − j)!
L
(α;β)
~n−jei

(x).

Proof. We prove here only the equation (3.5) because the equation (3.4) is an
easy consequence of the identity (3.3). Since

∞
∑

ni=0

∞
∑

j=0

L
(~α;β)
~n (x)

tni+j
i

ni!
=

∞
∑

ni=0

ni
∑

j=0

L
(~α;β)
~n−jei

(x)
tni

i

(ni − j)!
,
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we have

1

1− ti
G(~α;β)(x, t) =





∞
∑

j=0

tji





(

∞
∑

~n=0

L
(~α;β)
~n (x)

tn

~n!

)

=
∑

′





∞
∑

ni=0

∞
∑

j=0

L
(~α;β)
~n (x)

tni+j
i

ni!





tn1
1 · · · t

ni−1

i−1 t
ni+1

i+1 · · · tnr
r

n1! · · ·ni−1!ni+1! · · ·nr!

=

∞
∑

~n=0





ni
∑

j=0

ni!

(ni − j)!
L
(~α;β)
~n−jei

(x)





t~n

~n!
,

(3.6)

where
∑

′ :=
∑∞

n1=0

∑∞
n2=0 · · ·

∑∞
ni−1=0

∑∞
ni+1=0 · · ·

∑∞
nr=0. Since

(3.7) G(~α+ei;β)(x, t) =

∞
∑

~n=0

L
(~α+ei;β)
~n (x)

t~n

~n!
,

we obtain the result by comparing the coefficients of (3.6) and (3.7). �

Combining (3.2) and (3.4) we have

L
(~α;β)
~n+ei

(x)− niL
(~α;β)
~n (x) = (βx + αi + 1)L

(~α;β)
~n (x) + x

d

dx
L
(~α;β)
~n (x),

which can be obtained from (3.1) directly. In case of r = 2, Theorem 3.1 implies

L(α1,α2;β)
n1,n2

(x) = L(α1+1,α2;β)
n1,n2

(x)− n1L
(α1+1,α2;β)
n1−1,n2

(x)

= L(α1,α2+1;β)
n1,n2

(x)− n2L
(α1,α2+1;β)
n1,n2−1 (x)

and

L(α1+1,α2;β)
n1,n2

(x) =

n1
∑

j=0

n1!

(n1 − j)!
L
(α1,α2;β)
n1−j,n2

(x);

L(α1,α2+1;β)
n1,n2

(x) =

n2
∑

j=0

n2!

(n2 − j)!
L
(α1,α2;β)
n1,n2−j (x).

If we adopt the relation (3.5) in Theorem 3.1 iteratively, we have

L
(~α+e;β)
~n (x) =

n1
∑

k1=0

n2
∑

k2=0

· · ·

nr
∑

kr=0

~n!

(~n− ~k)!
L
(~α;β)
~n−

∑
r
j=1 kjej

(x),

where ~k = (k1, k2, . . . , kr). The recurrence relations in Theorem 3.1 can also
be regraded as a generalization of
(3.8)

L(α)
n (x) = L(α+1)

n (x) + nL
(α+1)
n−1 (x) and L(α+1)

n (x) =
n
∑

j=0

(−1)jn!

(n− j)!
L
(α)
n−j(x),
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where {L
(α)
n (x)}∞n=0 is the monic Laguerre polynomials.

4. Multiple Laguerre II polynomials

From the identities of G(α;~β)(x, t) for multiple Laguerre II polynomials

∂

∂x
G(α;~β)(x, t) =

|~β · t|

1− |t|
G(α;~β)(x, t) = |~β · t|G(α+1;~β)(x, t)

and for i = 1, 2, . . . , r,

(4.1)
∂

∂ti
G(α;~β)(x, t) =

βix+ α+ 1

1− |t|
G(α;~β)(x, t) +

x

1− |t|

∂

∂x
G(α;~β)(x, t),

the author found ([13, Theorem 2.8] differential-difference equations

d

dx
L
(α;~β)
~n (x) =

r
∑

j=1

βjnjL
(α+1;~β)
~n−ej

(x),

d

dx
L
(α;~β)
~n (x)−

r
∑

j=1

nj

d

dx
L
(α;~β)
~n−ej

(x) =
r
∑

j=1

njβjL
(α;~β)
~n−ej

(x)

and for i = 1, 2, . . . , r,

(4.2) L
(α;~β)
~n+ei

(x)−

r
∑

j=1

njL
(α;~β)
~n−ej+ei

(x) = (βix+α+1)L
(α;~β)
~n (x) + x

d

dx
L
(α;~β)
~n (x).

These equations can be regarded as generalizations of

d

dx
L(α)
n (x) = nL

(α+1)
n−1 (x),

d

dx

(

L(α)
n (x) + nL

(α)
n−1(x)

)

= nL
(α)
n−1(x)

and

L
(α)
n+1(x) + nL(α)

n (x) = (x− α− 1)L(α)
n (x)− x

d

dx
L(α)
n (x),

where {L
(α)
n (x)}∞n=0 is the monic Laguerre polynomials as in Section 3.

For a new recurrence relation for multiple Laguerre II polynomials we use
the identity

G(α+1;~β)(x, t) =
1

1− |t|
G(α;~β)(x, t)

or equivalently

G(α;~β)(x, t) = (1− |t|)G(α+1;~β)(x, t).

Theorem 4.1. Let {L
(α;~β)
~n (x)}∞|~n|=0 be the multiple Laguerre II polynomials.

Then we have

(4.3) L
(α;~β)
~n (x) = L

(α+1;~β)
~n (x) −

r
∑

j=1

njL
(α+1;~β)
~n−ej

(x)
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and

(4.4) L
(α+γ+1;~β+~δ)
~n (x) =

~n
∑

~k=0

(

~n
~k

)

L
(γ;~δ)
~k

(x)L
(α;~β)
~n−

∑
r
j=1 kjej

(x),

where γ > −1, ~δ =
∑r

i=1 δiei with δi < 0, and ~k = (k1, k2, . . . , kr).

Proof. From G(α;~β)(x, t) = (1 − |t|)G(α+1;~β)(x, t), the equation (4.3) can be
proved by the equation

∞
∑

~n=0

L
(α;~β)
~n (x)

t~n

~n!
=

∞
∑

~n=0

(1− |t|)L
(α+1;~β)
~n (x)

t~n

~n!

=

∞
∑

~n=0

L
(α+1;~β)
~n (x)

t~n

~n!
−

∞
∑

~n=0

r
∑

j=1

njL
(α+1;~β)
~n−ej

(x)
t~n

~n!
.

For the proof of the equation (4.4), note that

G(α+γ+1;~β+~δ)(x, t) =
1

(1− |t|)α+γ+2
e

|(~β+~δ)·t|x
1−|t| = G(γ;~δ)(x, t)G(α;~β)(x, t)

so that

∞
∑

~n=0

L
(α+γ+1;~β+~δ)
~n (x)

t~n

~n!
=





∞
∑

~k=0

L
(γ;~δ)
~k

(x)
t
~k

~k!





(

∞
∑

~n=0

L
(α;~β)
~n (x)

t~n

~n!

)

=

r
∑

i=1

(

∞
∑

ni=0

∞
∑

ki=0

L
(γ;~δ)
~k

(x)L
(α;~β)
~n (x)

tni+ki

i

ki!ni!

)

=

r
∑

i=1

(

∞
∑

ni=0

ni
∑

ki=0

(

ni

ki

)

L
(γ;~δ)
~k

(x)L
(α;~β)
~n−kiei

(x)
tni

i

ni!

)

=

∞
∑

~n=0





~n
∑

~k=0

(

~n
~k

)

L
(γ;~δ)
~k

(x)L
(α;~β)
~n−

∑
r
j=1 kjej

(x)





t~n

~n!
.

(4.5)

By comparing the coefficients of (4.5), the relation (4.4) follows. �

Combining (4.2) and (4.3), we have

L
(α−1;~β)
~n+ei

(x) = (βix+ α+ 1)L
(α;~β)
~n (x) + x

d

dx
L
(α;~β)
~n (x).

In case of r = 2, Theorem 4.1 implies

L(α;β1,β2)
n1,n2

(x) = L(α+1;β1,β2)
n1,n2

(x)− n1L
(α+1;β1,β2)
n1−1,n2

(x)− n2L
(α+1;β1,β2)
n1,n2−1 (x)

and

L(α+γ+1;β1−1,β2−1)
n1,n2

(x) =

n1
∑

k1=0

n2
∑

k2=0

(

n1

k1

)(

n2

k2

)

L
(γ;−1,−1)
k1,k2

(x)L
(α;β1,β2)
n1−k1,n2−k2

(x).
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The equation (4.3) is a generalization of the first equation (3.8) and the equation
(4.4) is quite similar to

L(α+β+1)
n (x) =

n
∑

k=0

(

n

k

)

L
(α)
k (0)L

(β)
n−k(x).

5. Jacobi-Piñeiro polynomials

For the generating function G(α1,α2;α)(x, t) of Jacobi-Piñeiro polynomials,
we can easily prove the identities

• t2G
(α1−1,α2;α)(x, t)− t1G

(α1,α2−1;α)(x, t) = (t2 − t1)G
(α1,α2;α)(x, t);

• t1xG
(α1+1,α2;α)(x, t) = (1+ t1)G

(α1,α2−1;α)(x, t)−G(α1−1,α2−1;α)(x, t);
t2xG

(α1,α2+1;α)(x, t) = (1+ t2)G
(α1−1,α2;α)(x, t)−G(α1−1,α2−1;α)(x, t);

• (x− 1)G(α1,α2;α)(x, t) = xG(α1+1,α2+1;α−1)(x, t) −G(α1,α2;α−1)(x, t),

from which the following recurrence relations follow.

Theorem 5.1. Let {P
(α1,α2;α)
n1,n2 (x)}∞n1+n2=0 be the Jacobi-Piñeiro polynomials.

Then we have

(i) n2P
(α1−1,α2;α)
n1,n2−1 (x) − n1P

(α1,α2−1;α)
n1−1,n2

(x)

= n2P
(α1,α2;α)
n1,n2−1 (x) − n1P

(α1,α2;α)
n1−1,n2

(x);

(ii) n1xP
(α1+1,α2;α)
n1−1,n2

(x) = P
(α1,α2−1;α)
n1,n2 (x) − P

(α1−1,α2−1;α)
n1,n2 (x)

+ n1P
(α1,α2−1;α)
n1−1,n2

(x);

n2xP
(α1,α2+1;α)
n1,n2−1 (x) = P

(α1−1,α2;α)
n1,n2 (x) − P

(α1−1,α2−1;α)
n1,n2 (x)

+ n2P
(α1−1,α2;α)
n1,n2−1 (x);

(iii) (x− 1)P
(α1,α2;α)
n1,n2 (x) = xP

(α1+1,α2+1;α−1)
n1,n2 (x) − P

(α1,α2;α−1)
n1,n2 (x).

Proof. From the first identity of generating function, we have

∞
∑

n1=0

∞
∑

n2=0

P (α1−1,α2;α)
n1,n2

(x)
tn1
1 tn2+1

2

n1!n2!
−

∞
∑

n1=0

∞
∑

n2=0

P (α1,α2−1;α)
n1,n2

(x)
tn1+1
1 tn2

2

n1!n2!

=

∞
∑

n1=0

∞
∑

n2=0

(t2 − t1)P
(α1,α2;α)
n1,n2

(x)
tn1
1 tn2

2

n1!n2!

so that (i) is proved. (ii) and (iii) can be proved by the same way. �

Now, we will give a differential-difference relation for Jacobi-Piñeiro poly-
nomials. In order to obtain the relation, we need a differential equation of
generating function.

Lemma 5.2. The generating function G(α1,α2;α)(x, t) of Jacobi-Piñeiro poly-

nomials satisfies

(5.1) x(x− 1)Gx + [αx+ (α1 + 1)(x− 1)]G+ t1(x− 1)Gt1 = G
(α1,α2;α−1)
t1
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and

(5.2) x(x − 1)Gx + [αx+ (α2 + 1)(x− 1)]G+ t2(x − 1)Gt2 = G
(α1,α2;α−1)
t2

,

where G = G(α1,α2;α)(x, t), Gx = dG
dx

, Gt1 = dG
dt1

, and Gt2 = dG
dt2

.

Proof. For convenience we let A = 1 + t1 − t1z, B = 1 + t2 − t2z, C = (1 −
t1z)(1− t2z)− t1t2z, and Φ = AB − t1zB − t2zA. Then we have C = x−1

z−1 ,

x = zAB and G(α1,α2;α)(x, t) = A−α1B−α2C−αΦ−1.

A direct calculation shows

Gt1 = −

(

α1

A

dA

dt1
+

α2

B

dB

dt1
+

α

C

dC

dt1
+

1

Φ

∂Φ

∂t1

)

G

= (z − 1)

(

α1(B − t2z) + α2t2z +
αzB

z − 1
+

(2z − 1)B

z − 1
− t2z −

zB

Φ

∂Φ

∂z

)

G

Φ

and

Gx = −

(

α1

A

dA

dx
+

α2

B

dB

dx
+

α

C

dC

dx
+

1

Φ

∂Φ

∂x

)

G

= −
α

x− 1
G+

(

α1t1
A

+
α2t2
B

+
α

z − 1
−

1

Φ

∂Φ

∂z

)

G

Φ
.

Hence,

(5.3)

xGx +
αx

x− 1
G−

A

z − 1
Gt1 = −

(

α1Φ+ Φ +
zAB

z − 1
+ t1zB

)

G

Φ

= −(α1 + 1)G−

(

zAB

z − 1
+ t1zB

)

G

Φ
.

Since ∂z
∂t1

= z(z−1)B
Φ , zB − zAB − t1zB(z − 1) = 0, and

(5.4)

A

z − 1
Gt1 = −t1Gt1 +

1

z − 1
Gt1

= −t1Gt1 +
1

x− 1

(

x− 1

z − 1
G

)

t1

+
zB

(z − 1)Φ
G,

we obtain by the equations (5.3) and (5.4)

xGx +
αx

x− 1
G+ t1Gt1 + (α1 + 1)G =

1

x− 1
G

(α1,α2,α−1)
t1

which is (5.1). The equation (5.2) can be proved by the same method. �

Theorem 5.3. The Jacobi-Piñeiro polynomial {P
(α1,α2;α)
n1,n2 (x)}∞n1+n2=0 satisfies

a differential-difference equation

(5.5)

P
(α1,α2;α−1)
n1+1,n2

(x) = x(x − 1)
d

dx
P (α1,α2;α)
n1,n2

(x) + [αx+ (α1 + 1 + n1)(x − 1)]P (α1,α2;α)
n1,n2

(x)
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and

(5.6)

P
(α1,α2;α−1)
n1,n2+1 (x)=x(x − 1)

d

dx
P (α1,α2;α)
n1,n2

(x) + [αx+ (α2 + 1 + n2)(x− 1)]P (α1,α2;α)
n1,n2

(x).

Proof. Since

t1Gt1 =

∞
∑

n1=0

∞
∑

n2=0

n1P
(α1,α2;α)
n1,n2

(x)
tn1
1 tn2

2

n1!n2!
,

Gt1 =

∞
∑

n1=0

∞
∑

n2=0

P
(α1,α2;α)
n1+1,n2

(x)
tn1
1 tn2

2

n1!n2!
,

Gx =

∞
∑

n1=0

∞
∑

n2=0

d

dx
P (α1,α2;α)
n1,n2

(x)
tn1
1 tn2

2

n1!n2!
,

we obtain the equation (5.5) from the equation (5.1) in Lemma 5.2. The second
equation (5.6) can also be proved by the same method using the equation (5.2)
in Lemma 5.2. �

The equations (5.5) and (5.6)) are kinds of raising operators that are very
useful to find a differential equation for orthogonal polynomials. It is well

known that the Jacobi polynomial {P
(α,β)
n (x)}∞n=0 satisfies a differential-difference

equation

(1− x2)
d

dx
P (α,β)
n (x) =

n+ α+ β + 1

2n+ α+ β + 2
[(2n+ α+ β + 2)x+ α− β]P (α,β)

n (x)

−
2(n+ 1)(n+ α+ β + 1)

2n+ α+ β + 2
P

(α,β)
n+1 (x),

where {P
(α,β)
n (x)}∞n=0 is orthogonal with respect to w(x) = (1−x)α(1+x)β on

[−1, 1] and normalized by P
(α,β)
n (1) =

(

n+α
n

)

. Hence, the results of Theorem
5.3 is a generalization of the relation for classical Jacobi polynomials.

Subtracting (5.6) from (5.5) in Theorem 5.3 gives

(α1 − α2 + n1 − n2)(x− 1)P (α1,α2;α)
n1,n2

(x) = P
(α1,α2;α−1)
n1+1,n2

(x) − P
(α1,α2;α−1)
n1,n2+1 (x)

and subtracting the equation (5.6) of the case (n1, n2 − 1) from the equation
(5.5) of the case (n1 − 1, n2), we have

x(x − 1)
d

dx

(

P
(α1,α2;α)
n1−1,n2

(x) − P
(α1,α2;α)
n1,n2−1 (x)

)

= αx
(

P
(α1,α2;α)
n1,n2−1 (x) − P

(α1,α2;α)
n1−1,n2

(x)
)

+ (x− 1)
(

(α2 + n2)P
(α1,α2;α)
n1,n2−1 (x) − (α1 + n1)P

(α1,α2;α)
n1−1,n2

(x)
)

,

which seems to be a new differential-difference equation for Jacobi-Piñeiro poly-
nomials.
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6. Multiple Bessel polynomials

For the generating function G(α1,α2;γ)(x, t) of multiple Bessel polynomials,
we can easily prove the identities

• t2G
(α1−1,α2;γ)(x, t) − t1G

(α1,α2−1;γ)(x, t) = (t2 − t1)G
(α1,α2;γ)(x, t).

• t1xG
(α1+1,α2;γ)(x, t) = G(α1,α2−1;γ)(x, t)−G(α1−1,α2−1;γ)(x, t);

t2xG
(α1,α2+1;γ)(x, t) = G(α1−1,α2;γ)(x, t)−G(α1−1,α2−1;γ)(x, t)

from which the following recurrence relations follow.

Theorem 6.1. Let {B
(α1,α2;γ)
n1,n2 (x)}∞n1+n2=0 be the multiple Bessel polynomials.

Then we have

(i) n2B
(α1−1,α2;γ)
n1,n2−1 (x)− n1B

(α1,α2−1;γ)
n1−1,n2

(x)

= n2B
(α1,α2;γ)
n1,n2−1 (x)− n1B

(α1,α2;γ)
n1−1,n2

(x).

(ii) n1xB
(α1+1,α2;γ)
n1−1,n2

(x) = B
(α1,α2−1;γ)
n1,n2 (x) −B

(α1−1,α2−1;γ)
n1,n2 (x);

n2xB
(α1,α2+1;γ)
n1,n2−1 (x) = B

(α1−1,α2;γ)
n1,n2 (x) −B

(α1−1,α2−1;γ)
n1,n2 (x).

Proof. From the first equation of generating function, we have
∞
∑

n1=0

∞
∑

n2=0

B(α1−1,α2;α)
n1,n2

(x)
tn1
1 tn2+1

2

n1!n2!
−

∞
∑

n1=0

∞
∑

n2=0

B(α1,α2−1;α)
n1,n2

(x)
tn1+1
1 tn2

2

n1!n2!

=
∞
∑

n1=0

∞
∑

n2=0

(t2 − t1)B
(α1,α2;α)
n1,n2

(x)
tn1
1 tn2

2

n1!n2!

so that (i) is proved. (ii) and (iii) can be proved by the same way. �

Subtracting the second equation from the first equation in Theorem 6.1(ii),
we obtain an interesting relation

B(α1,α2−1;γ)
n1,n2

(x)−B(α1−1,α2;γ)
n1,n2

(x) = x
(

n1B
(α1+1,α2;γ)
n1−1,n2

(x)− n2B
(α1,α2+1;γ)
n1,n2−1 (x)

)

.

Now, we will give a differential-difference relation for multiple Bessel poly-
nomials. In order to obtain the relation, we need a differential equation of
generating function.

Lemma 6.2. The generating function G(α1,α2;γ)(x, t) of multiple Bessel poly-

nomials satisfies

(6.1) x2Gx + [(α1 + 1)x− γ]G+ t1xGt1 = G
(α1−1,α2−1;γ)
t1

and

(6.2) x2Gx + [(α2 + 1)x− γ]G+ t2xGt2 = G
(α1−1,α2−1;γ)
t2

,

where G = G(α1,α2;γ)(x, t), Gx = dG
dx

, Gt1 = dG
dt1

, and Gt2 = dG
dt2

.

Proof. For convenience, we let A = 1− t1z, B = 1− t2z, and Φ = AB− t1zB−
t2zA. Then we have

x = zAB and G(α1,α2;α)(x, t) = A−α1B−α2eγ(
1
z
− 1

x
).
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A direct calculation similar to the proof of Lemma 6.2 shows

Gt1 =

(

α1z(B − t2z) + α2t2z
2 − γB + 2zB − t2z

2 −
z2B

Φ

∂Φ

∂z

)

G

Φ

and

Gx =
γ

x2
G+

(

α1t1
A

+
α2t2
B

−
γ

z2
−

1

Φ

∂Φ

∂z

)

G

Φ

so that

xGx −
γ

x
G−

A

z
Gt1 = −α1G+ (t2zA− 2AB)

G

Φ
.

Hence, we have

xGx −
γ

x
G+ t1Gt1 + α1G =

1

z
Gt1 + (t2zA− 2AB)

G

Φ

=
1

x
(ABG)t1 + (B + t2zA− 2AB)

G

Φ

=
1

x
G

(α1−1,β1−1;γ)
t1

−G

which is (6.1). The equation (6.2) can be proved by the same method. �

Theorem 6.3. The multiple Bessel polynomial {B
(α1,α2;γ)
n1,n2 (x)}∞n1+n2=0 satis-

fies a differential-difference equation

(6.3) x2 d

dx
B(α1,α2;γ)

n1,n2
(x)+[(α1+1+n1)x−γ]B(α1,α2;γ)

n1,n2
(x) = B

(α1−1,α2−1;γ)
n1+1,n2

(x)

and

(6.4) x2 d

dx
B(α1,α2;γ)

n1,n2
(x)+[(α2+1+n2)x−γ]B(α1,α2;γ)

n1,n2
(x) = B

(α1−1,α2−1;γ)
n1,n2+1 (x).

Proof. Since

t1Gt1 =

∞
∑

n1=0

∞
∑

n2=0

n1B
(α1,α2;γ)
n1,n2

(x)
tn1
1 tn2

2

n1!n2!
,

Gt1 =

∞
∑

n1=0

∞
∑

n2=0

B
(α1,α2;γ)
n1+1,n2

(x)
tn1
1 tn2

2

n1!n2!
,

Gx =

∞
∑

n1=0

∞
∑

n2=0

d

dx
B(α1,α2;γ)

n1,n2
(x)

tn1
1 tn2

2

n1!n2!
,

we prove the equation (6.3) from the equation (6.1). The equation (6.4) can
be proved by the same method using the equation (6.2) in Lemma 6.2. �

The equations (6.3) and (6.4) are kinds of raising operators for multiple
Bessel polynomials that is very useful to find a differential equation for or-
thogonal polynomials. It is well known that the monic Bessel polynomial
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{B
(α,β)
n (x)}∞n=0 satisfies a differential-difference equation

x2 d

dx
B(α,β)

n (x) =

(

nx−
βn

2n+ α− 2

)

B(α,β)
n (x)

+
n(n+ α− 2)β2

(2n+ α− 3)(2n+ α− 2)2
B

(α,β)
n−1 (x),

where {B
(α,β)
n (x)}∞n=0 is orthogonal with respect to w(x) = xαe

β
x on the unit

circle in complex plane. Hence, the result of Theorem 6.3 is a generalization of
the relation for classical Bessel polynomials.

Subtracting the equation (6.4) from (6.3) in Theorem 6.3 gives

(α1 − α2 + n1 − n2)xB
(α1,α2;γ)
n1,n2

(x) = B
(α1−1,α2−1;α)
n1+1,n2

(x) −B
(α1−1,α2−1;α)
n1,n2+1 (x)

and subtracting the equation (6.4) of the case (n1, n2 − 1) from (6.3) of the
case (n1 − 1, n2), we get

x2 d

dx

(

B
(α1,α2;γ)
n1−1,n2

(x) − B
(α1,α2;γ)
n1,n2−1 (x)

)

= γ
(

B
(α1,α2;γ)
n1−1,n2

(x)−B
(α1,α2;γ)
n1,n2−1 (x)

)

− x
(

(α1 + n1)B
(α1,α2;γ)
n1−1,n2

(x) − (α2 + n2)B
(α1,α2;γ)
n1,n2−1 (x)

)

,

which seems to be a new differential-difference equation for multiple Bessel
polynomials.
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