DOI QR코드

DOI QR Code

Effects of Psychrotrophic Bacteria Acinetobacter genomospecies 10 and Serratia liquefaciens on Raw Milk Quality

내냉성 미생물인 Acinetobacter genomospecies 10과 Serratia liquefaciens가 원유의 품질에 미치는 영향

  • 신용국 (서울우유협동조합중앙연구소) ;
  • 오남수 (서울우유협동조합중앙연구소) ;
  • 이현아 (서울우유협동조합중앙연구소) ;
  • 남명수 (충남대학교 농업생명과학대학 동물바이오시스템과학과)
  • Received : 2013.04.19
  • Accepted : 2013.08.22
  • Published : 2013.08.31

Abstract

This study was conducted to investigate effect of psychrotrophic bacteria on the quality of raw milk. Acinetobacter genomospecies 10 was selected as lipolytic species, and Serratia liquefaciens as proteolytic species. Lipase present in inoculated raw milk with Acinetobacter genomospecies 10 did not affect total solid and fat contents. However, the free fatty acid (FFA) content, especially short chain FFAs, of milk with Acinetobacter genomospecies 10 was dramatically increased. FFAs produced by lipolysis of milk fat are important in flavor of dairy products, excessive lipolysis occurring in milk and dairy products could cause off-flavor, and produced FFAs may have an underiable effect on their flavor. In addition, protease influenced the quality of inoculated raw milk with Serratia liquefaciens. In degradation patterns of casein by SDS-PAGE analysis from inoculatred raw milk with Serratia liquefaciens, casein content was gradually decreased during storage at $4^{\circ}C$, and extensive degradation of $\kappa$-casein was observed on the storage day of 13. The free amino acids such as leucine, valine, arginine, and tyrosine were dramatically increased, which causes bitter taste in raw milk. These excessive peptides in dairy products, produced by psychrotrophic bacteria, can be possible to develop off-flavors and be responsible for gelling of milk by degradation.

살균한 원유에 지방분해효소와 단백질 분해효소활성이 가장 높게 나타났던 균주를 접종하고 저장하면서 내냉성미생물이 생성하는 효소가 원유의 품질에 미치는 영향을 조사하였다. 지방분해효소활성이 높은 Acinetobacter genomospecies 10은 냉장저장기간 중 총 고형분과 유지방의 함량에 영향을 미치지 않았고, 지방의 분해는 냉장보관 14일째에 대조구와 비교하여 2.6배 이상의 유리지방산을 생성하였다. 생성된 지방산의 조성은 short chain free fatty acid(SCFFA), middle chain free fatty acid(MCFFA) 및 long chain free fatty acid(LCFFA)를 모두 생성하였으며, 특히 SCFFA와 MCFFA의 증가율이 높았다. 단백질 분해효소활성이 높은 Serratia liquefaciens은 원유의 총 고형분과 유단백질 함량에 영향을 미치지 않았고, 단백질 조성의 변화는 냉장저장기간 동안 케이신의 함량이 서서히 감소하다가 10일째부터 $\kappa$-케이신의 함량이 현저히 감소하였다. 유리아미노산은 대조구와 비교하여 냉장저장 14일째 2.8배 이상 생성되었으며 특히 소수성 아미노산으로 쓴맛을 내는 leucin, valine 등의 함량이 급격히 증가하였다.

Keywords

References

  1. Adams, D. M., Barach, J. T., and Speck, M. L. (1976) Effect of psychrotrophic bacteria from raw milk on milk proteins and stability of milk proteins to ultra high temperature treatment. J. Dairy Sci. 59, 823-827. https://doi.org/10.3168/jds.S0022-0302(76)84282-8
  2. Aubourg, S. P. (2001) Fluorescence study of the pro-oxidant effect of free fatty acids in marine lipids. J. Sci. Food Agr. 81, 385-390. https://doi.org/10.1002/1097-0010(200103)81:4<385::AID-JSFA821>3.0.CO;2-X
  3. Barnes, L. M., Lo, M. F., Adans, M. R., and Chamberlain, A. H. L. (1999) Effect of milk proteins on adhesion of bacteria to stainless steel surfaces. Appl. Environ. Microb. 65, 4543- 4548.
  4. Beuvier, E. and Buchin, S. (2004) Raw milk cheeses. In: Cheese: Chemistry, Physics and Microbiology. Fox, P. F., Mc- Sweeney,P. L. H., Cogan, T. M. and Guinee, T. P. (eds) Academic Press, London, pp. 319-345.
  5. Bockelmann, I. V. (1970). Int. Dairy Congr., 1E, 106.
  6. Chung, C. I. (2000) Quality of milk and psychrotrophic bacteria. J. Korean Dairy Technol. Sci. 18, 38-46.
  7. Fairbairn, D. J. and Law, B. A. (1986) Proteinases of psychrotrophic bacteria-their production, properties, effects and control. J. Dairy Res. 53, 139-177. https://doi.org/10.1017/S0022029900024742
  8. Fajardo-Lira, C., Oria, M., Hayes, K. D., and Nielsen, S. S. (2000) Effect of psychrotrophic bacteria and of an isolated protease from Pseudomonas fluorescens M3/6 on the plasmin system of fresh milk. J. Dairy Sci. 83, 2190-2199. https://doi.org/10.3168/jds.S0022-0302(00)75102-2
  9. Farkye, N. Y., Imafidon, G. I. and Fox, P. F. (1995) Thermal denaturation of indigenous milk enzymes. In: Heat induced changes in milk. Fox, P. F. (2nded.) International Dairy Federation, Brussels, pp. 331-348.
  10. Hong, J. L. (1994) Determination of amino acids by precolumn derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carba-mate and high performance liquid chromatography with ultraviolet detection. J. Chromatogr. 670, 59-66. https://doi.org/10.1016/0021-9673(94)80280-7
  11. De Jong, C. and Badings, H. T. (1990) Determination of free fatty acids in milk and cheese procedures for extraction, clean up, and capillary gas chromatographic analysis. J. High Res. Chromatog. 13, 94-98. https://doi.org/10.1002/jhrc.1240130204
  12. Kikuchi, M., and Matsui, Y. (1974b) Transition of the number of bacteria and bacterial flora in bulk-cooled milk. Jpn. J. Dairy Sci. 45, 592-596.
  13. Kosikowski, F. V., and Iwaski, T. (1975) Changes in cheddar cheese by commercial enzyme preparation. J. Dairy Sci. 58, 963. https://doi.org/10.3168/jds.S0022-0302(75)84667-4
  14. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  15. Lee, K. W., Suh, D. S., and Kwak, H. S. (1993) Impact of psychrotroph- originated enzyme in accelerated Cheddar cheese ripening. I. Hydrolysis of casein. Foods Biotech. 2, 111-116.
  16. Miura, H., Mikami, M., and Ishioroshi, M. (1977) Decomposition of casein by psychrotrophic organisms. Res. Bull. Obihiro Univ. 10, 461-470.
  17. Ouattara, G., Jeon, I., Hart-Thakur, R., and Schmidt, K. (2004) Fatty acids released from milk fat by lipoprotein lipase and lipolytic psychrotrophs. J. Food Sci. 69, 659-664. https://doi.org/10.1111/j.1750-3841.2004.tb18014.x
  18. Punch, J. D., Olson, J. C., and Thomas, E. L. (1965) Psychrophilic bacteria. III. Population levels associated with flavor or physical change in milk. J. Dairy Sci. 48, 1179-1183. https://doi.org/10.3168/jds.S0022-0302(65)88423-5
  19. Rowe, M. T., Dunstall, G., Kilpatrick, D., and Wisdomm, G. B. (2001) A study of changes in the psychrotrophic microflora of raw milk during refrigerated storage. Milchwissenschaft 56, 247-250.
  20. SAS. (2010) SAS/STAT Software for PC. Release 9.1, SAS institute Inc., Cary, NC, USA.
  21. Sasano, M., Okada, M., Chonan, T., and Oura, Y. (1977) Proteolysis of milk protein by psychrotrophic bacteria isolated from refrigerated raw milk. Jpn. J. Zootech. Sci. 48, 403-409.
  22. Shin, Y. K., Oh, N. S., Lee, H. A., and Nam, M. S. (2013) Seasonal, Regional Distribution and Identification of Psychrotrophic Bacteria in Milk. CNU J. Agric. Sci. 40, 27-34. https://doi.org/10.7744/cnujas.2013.40.1.027
  23. Urbach, G. (1993) Relations between cheese flavor and chemical composition. Int. Dairy J. 3, 389-422. https://doi.org/10.1016/0958-6946(93)90025-U
  24. Walstra, P. and Jenness, R. (1984) Dairy chemistry and physics. John Wiley and Sons, NY, pp. 465.
  25. Wehr, H. M. and Frank, J. F. (2004) Standards methods for the examination of dairy products. American public health association, Washinton DC, pp. 153-168.
  26. Weihrauch, J. (1988) Fundamentals of dairy chemistry. In: Lipid of milk:Deterioration,Wong, N., Jenness, R., Keeney, M., and Marth, E. (eds), Van Nostrand Reihhold Co., NY, pp. 215-278.
  27. Korean Food Standards Codex. (2010) Ministry of Food and Drug Safety. pp. 10-1-1.1-35.

Cited by

  1. Changes in Fat in Gouda Cheese by the Psychrotrophic Bacterium Acinetobacter Genomospecies 10 vol.25, pp.2, 2015, https://doi.org/10.5352/JLS.2015.25.2.174
  2. Effects of Psychrotrophic Bacteria, Serratia liquefaciens and Acinetobacter genomospecies 10 on Yogurt Quality vol.34, pp.4, 2014, https://doi.org/10.5851/kosfa.2014.34.4.543