DOI QR코드

DOI QR Code

Morphological and Genetic Stock Identification of Todarodes pacificus in Korean Waters

한국 주변해역에 서식하는 살오징어(Todarodes pacificus)의 형태 및 유전학적 계군분석

  • Kim, Jeong-Yun (Department of Oceanography, Pukyung National University) ;
  • Yoon, Moon-Geun (Yangyang Salmon Station, Korea Fisheries Agency) ;
  • Moon, Chang-Ho (Department of Oceanography, Pukyung National University) ;
  • Kang, Chang-Keun (POSTECH Ocean Science & Technology Institute, Pohang University of Sciences and Technology) ;
  • Choi, Kwang Ho (Fisheries Resources Research Division, National Fisheries Research & Development Institute) ;
  • Lee, Chung Il (Department of Marine Bioscience, Gangneung-Wonju National University)
  • 김정연 (부경대학교 해양학과) ;
  • 윤문근 (한국수산자원관리공단) ;
  • 문창호 (부경대학교 해양학과) ;
  • 강창근 (포항공과대학교 해양대학원) ;
  • 최광호 (국립수산과학원 자원연구과) ;
  • 이충일 (강릉원주대학교 해양자원육성학과)
  • Received : 2013.04.08
  • Accepted : 2013.07.18
  • Published : 2013.08.31

Abstract

Stock identification of Todarodes pacificus collected in the East Sea, Yellow Sea and East China Sea during the period from September to December in 2011 was analyzed by morphometric characters and mitochondrial DNA (mtDNA) cytochrome oxidase subunit I (COI) gene nucleotide variations. Frequency distributions of mantle length was analyzed by morphological method with measuring size of T. pacificus. Then each stock was estimated to confirm their maturation for mean mantle length comparing with mean mature mantle length 20-22 cm. According to morphologic stock identification, it is estimated that the northern part of East Sea is categorized as summer stock and the rest parts, including mid /southern part of the East Sea, northern part of the East China Sea and northern part of the West Sea were autumn stock. For genetic analysis, a total 49 haplotypes were defined by 33 variable nucleotide sites. From the extensive haplotype diversity, limited nucleotide diversity and star-like shape of haplotype network, T. pacificus appears to have undergone rapid population expansion from an ancestral population with a small effective population size. Although pair-wise Fst estimates which represent genetic difference among groups were low, there are relatively remarkable difference of Fst between middle and southern part of the East Sea. Although middle part of the East Sea and southern part of the East Sea were situated at the East Sea, genetically separated groups were appeared.

본 연구는 2011년 9월에서 12월까지 동해(북부, 중부, 남부), 서해, 동중국해의 해구에서 각각 채집된 살오징어의 계군을 형태 및 유전학 차이를 이용하여 구분하였다. 형태학적 차이에 따른 계군분석은 평균성숙외투장(20-22 cm)을 기준으로 하여 발생시기를 구분하였고, 유전학적 특성에 따른 계군은 mtDNA COI 영역의 염기변이에 의한 유전자 다양성을 이용하여 확인하였다. 본 연구 결과 평균성숙외투장을 기준으로 동해 북부는 발생시기가 하계군, 나머지 집단(동해 중부, 동해 남부, 동중국해 북부, 서해 북부)은 추계군으로 크게 2개의 계군으로 추정되었다. 유전자 분석결과 살오징어 mtDNA COI 영역에서 총 49개의 haplotype을 확인하였다. TCS 분석결과 haplotype 유전자형 네트워크가 star-like형태이며, 모든 집단에서 유전적 다양성(haplotype diversity, h)이 높고(h=0.661~0.841), 반면에 염기 다양도(nucleotide diversity, ${\pi}$)가 낮게 나타난 점으로 미루어보아 국내 서식 살오징어의 경우 최근에 급속한 집단의 분화가 이루어진 것으로 판단된다. Pairwise Fst를 이용한 집단분석결과 비록 모든 집단간의 유전적 차이가 낮게 나타났지만(Fst = 0.001~0.043) 평균성숙외투장 기준으로 같은 추계군으로 분류된 집단(동해 중부, 동해남부, 서해 북부)간에는 유전적 차이를 확인할 수 있었다(P<0.05).

Keywords

References

  1. Avise, J.C., 1994. Molecular markers, Natural History and Evolution. Chapman and Hall, New York.
  2. Choi, K.H., 2005. Fishing conditions of common squid, Todarodes pacificus Steenstrup in relation to oceanic conditions in Korea Waters. Ph.D. Thesis, Pukyong National University, 102 pp.
  3. Choi, K.H., C.I. Lee, K.S. Hwang, S.W. Kim, J.H. Park and Y. Gong, 2008. Distribution and migration of Japanese common squid, Todarodes pacificus, in southwest part of the East (Japan)sea. Fish. Res., 91: 281-290. https://doi.org/10.1016/j.fishres.2007.12.009
  4. Clement, M., D. Posaka and K.A.Crandall, 2000. TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9: 1657-1659. https://doi.org/10.1046/j.1365-294x.2000.01020.x
  5. Edmands, S., P. E. Moberg and R. S. Burton, 1996. Allozyme and mitochondrial DNA evidence of population subdivision in the purple sea urchin Stronglocentrotus purpuratus. Mar. Biol., 126: 443-450. https://doi.org/10.1007/BF00354626
  6. Kang, Y.J., T.H. Kim, Y.K. Hong, J.Y. Park and K.Y. Park, 1996. A population genetic analysis of the common Squid, Todarodes pacificus Steenstrup in the Korean waters. J. Kor. Fish. Soc., 29: 320-331.
  7. Kasahara, S. and S. Ito, 1968. Studies on the migration of common squids in the Japan Sea. 2. Migrations and some biological aspects of common squids having occurred in the offshore region of the Japan Sea during the autumn season of 1966 and 1967. Bull. Reg. Fish. Res. Lab., 20: 49-70.
  8. Kasahara, S., 1978. Descriptions of offshore Squid Angling in the Sea of Japan, with Special Reference to the Distribution of Common Squid and on the Techniques for Forecasting Fishing Conditions. Bull. Jan. Reg. Fish. Res. Lab., 29: 179-199.
  9. Kidokoro, H., T. Goto, T. Nagasawa, H. Nishida, T. Akamine and Y. Sakurai, 2010. Impact of a climate regime shift on the migration of Japanese common squid (Todarodes pacificus) in the Sea of Japan. ICES J. Mar. Sci., 67: 1314-1322.
  10. Kim, Y.H. and Y.J. Kang, 1995. Population analysis of the common squid, Todarodes pacificus Steenstrup in Korean waters 1. Seperation of population J. Kor. Fish. Soc., 28(2): 163-173.
  11. Kim, Y.H., Y.J. Kang and C.I. Baik, 1997. Population analysis of the common squid, Todarodes pacificus Steenstrup in Korean waters 2. Morphological analysis J. Kor. Fish. Soc., 30(5): 903pp.
  12. Kim, Y.H., Y.J. Kang, S.H. Choi, C.S. Park and C.I. Baik. 1997. Population analysis by the reproductive ecological method for the common squid, Todarodes pacificus Steenstrup in Korean waters 2. Morphological analysis J. Kor. Fish. Soc., 28(2): 163-173.
  13. Kim, Y.S., 1990. Population Analysis with Electrophoresis of Todarodes pacificus (STEENSTRUP) Collected from the East Sea and West Sea. M.S.Thesis, Inha University, Incheon, 46pp.
  14. Mokrin, N.M., Y. Novikov and Y. Zuenko, 2002. Seasonal migrations and oceanographic conditions for concentration of the Japanese flying squid (Todarodes pacificus Steenstrup, 1880) in the northwestern Japan Sea. Bull. Mar. Sci., 71: 487-499.
  15. Murata, M., 1978. The relation between mantle length and body weight of the Squid, Todarodes pacificus Steenstrup. Bull. Hokkaido Reg. Fish. Res. Lab., 43: 33-51.
  16. Murata, M., 1990. Ocean resources of squids. Mar. Behav. Physiol., 18: 19-71. https://doi.org/10.1080/10236249009378779
  17. Nakamura, Y. and Y. Sakurai, 1991. Validation of daily growth increments in statoliths of Japanese common squid, Todarodes pacificus. Nip. Sui. Gak., 57: 2007-2011. https://doi.org/10.2331/suisan.57.2007
  18. Nakamura, Y. and Y. Sakurai, 1993. Age determination from daily growth increments in statoliths of some groups of Japanese common squid, Todarodes pacificus. In: Rec. Adv. Cep. Fish. Biol. eds. Uni. Pre. Tok., 339-344.
  19. Okutani, T., 1983. Todarodes pacificus. In: Cephalopod life cycles, edited by Boyle, P.R., Vol 1. Academic Press, London, pp. 201-216.
  20. Osako, M. and M. Murata, 1983. Stock assessment of cephalopod resources in the Northwestern Pacific. In: Advances in Assessment of World Cephalopod Resources, edited by J.F. Caddy, FAO Fish. Tech. Paper., 231: pp. 55-144.
  21. Rosa, A.L., J. Yamamoto and Y. Sakurai, 2011. Effects of environmental variability on the spawning areas, catch, and recruitment of the Japanese common squid, Todarodes pacificus (Cephalopoda: Ommastrephidae), from the 1970s to 2000s. Ices. J. Mar. Sci., 68(6): 1114-1121. https://doi.org/10.1093/icesjms/fsr037
  22. Sakurai, Y., H. Kiyofuji, S. Saitoh, J. Yamamoto, T. Goto, K. Mori and T. Kinoshita, 2002. Stock fluctuations of the Japanese common squid, Todarodes pacificus, related to recent climate changes. Fish. Sci., 68: 226-229.
  23. Schneider, S., D. Roessli and L. Excoffier, 2000. Arlequin. Version 2.000 University of Geneva, Geneva: available at the web site http://lgb.unige.ch/arlequin/.
  24. Slatkin, M. and R.R. Hudson, 1991. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations montgomery. Gen., 129: 555-562.
  25. Takumiya, M., M. Kobayashi, K. Tsuneki and H. Furuya, 2005. Phylogenetic relationships among major species of Japanese coleoid cephalopods (Mollusca: Cephalopoda) using three mitochondrial DNA sequences. Zool. Sci., 22: 147-155. https://doi.org/10.2108/zsj.22.147
  26. Tanaka, S., 1956. One method of polymodal frequency distribution and application to analyze frequency distribution of body length of Dentextumifrons. Bull. Tok. Reg. Fish. Res. Lab., 14: 1-13.
  27. Uthicke, S. and J.H. Benzie, 2003. Gene flow and population history in high dispersal marine invertebrates: mitochondrial DNA analysis of Holithurianobilis (Echinodermata: Holothuroidea) populations from the Indo-Pacific. Mol. Ecol., 12: 2635-2648. https://doi.org/10.1046/j.1365-294X.2003.01954.x
  28. Zhang, C.I., 2010. Marine fisheries resource ecology. Pukyung National University, Busan, 559 pp.