DOI QR코드

DOI QR Code

Study on Establishing Algal Bloom Forecasting Models Using the Artificial Neural Network

신경망 모형을 이용한 단기조류예측모형 구축에 관한 연구

  • 김미은 (부산대학교 공과대학 사회환경시스템공학부) ;
  • 신현석 (부산대학교 공과대학 사회환경시스템공학부)
  • Received : 2012.12.26
  • Accepted : 2013.04.09
  • Published : 2013.07.31

Abstract

In recent, Korea has faced on water quality management problems in reservoir and river because of increasing water temperature and rainfall frequency caused by climate change. This study is effectively to manage water quality for establishment of algal bloom forecasting models with artificial neural network. Daecheong reservoir located in Geum river has suitable environment for algal bloom because it has lots of contaminants that are flowed by rainfall. By using back propagation algorithm of artificial neural networks (ANNs), a model has been built to forecast the algal bloom over short-term (1, 3, and 7 days). In the model, input factors considered the hydrologic and water quality factors in Daecheong reservoir were analyzed by cross correlation method. Through carrying out the analysis, input factors were selected for algal bloom forecasting model. As a result of this research, the short term algal bloom forecasting models showed minor errors in the prediction of the 1 day and the 3 days. Therefore, the models will be very useful and promising to control the water quality in various rivers.

최근 한국은 기후변화로 인한 기온 및 수온 상승, 빈번한 집중호우와 친수공간 조성에 따른 적극적인 하천의 활용 등으로 인하여 하천 및 저수지 내 수질관리에 있어 해결해야 하는 많은 문제점을 가지고 있다. 본 연구는 효율적인 수질관리를 위하여 인공신경망을 이용한 단기조류예측모형 구축에 관한 연구이다. 대상지역으로 조류가 번식하기 좋은 조건을 지니고 있는 금강유역 내 대청호를 선정하였고 설치되어 있는 수질 자동측정망의 일 단위자료를 이용하였다. 다층전방향신경망의 역전파 알고리즘을 이용하여 단기(1일, 3일, 7일) 조류를 예측할 수 있는 모형을 구축하였다. 본 모형에서는 대청호 내 수문 및 수질성분을 교차상관분석을 기초하여 단기조류예측모형의 입력 성분을 선정한 후 다양한 조류예측 신경망 모형을 구축하여 결과에 대한 검증을 실시하였다. 구축된 단기조류예측모형은 자연발생적인 기작과 유사한 현상을 재현할 수 있는 다양한 수질인자를 고려하여 단기조류예측모형을 구축한 경우 예측의 정확도가 높게 도출되었다. 본 연구는 신경망모형의 최대 장점인 비선형성 및 간편성 등을 고려하였을 때 우리나라의 수질예측에 적합한 신경망 모형을 구축할 수 있으며 이를 통한 하천 및 호수 내 효율적인 수질관리 방안을 제시할 수 있을 것이다.

Keywords

References

  1. Ahn, S.J., Yeon, I.S., Han, Y.S., and Lee, J.K. (2001). "Water quality forecasting at Gongju station in Geum River using neural network model." Journal of the Korean Society of Civil Engineers, Vol. 34, No. 5, pp. 701-711.
  2. Cho, Y.J., Yeon, I.S., and Lee, J.K. (2004). "Application of neural network model to the real-time forecasting of water quality." Journal of Korean Society on Water Quality, Vol. 18, No. 4, pp. 321-326.
  3. Karula, C., Soyupaka, S., Cilesizc, A.F., Akbayb, N., and Germenb, E. (2000). "Case studies on the use of neural networks in eutrophication modeling." J. Ecological Modelling, Vol. 134, pp. 145-152. https://doi.org/10.1016/S0304-3800(00)00360-4
  4. Lee, E.H., and Seo, D.I. (2002). "Water quality modelling of the Keum River-Effect of Yongdam Dam." Journal of Korea Water Resources Association, Vol. 35, No. 5, pp. 525-539. https://doi.org/10.3741/JKWRA.2002.35.5.525
  5. Oh, C.R., Jin, Y.H., Kim, D.R., and Park, S.C. (2008). "Study on development of artificial neural network forecasting model using runoff, water quality data." Journal of Korea Water Resources Association, Vol. 41, No. 10, pp. 1035-1044. https://doi.org/10.3741/JKWRA.2008.41.10.1035
  6. Oh, C.R., Park, S.C., Lee, H.M., and Pyo, Y.P. (2002). "A forecasting of water quality in the Youngsan River using neural network." Journal of the Korean Society of Civil Engineers, Vol. 35, No. 5, pp. 525-539.
  7. Park, S.C., and Ha, S.J. (2003). "Forecasting the water quality of river using GANN." Journal of the Korean Society of Civil Engineers, Vol. 23, No. 6B, pp. 507-514.
  8. Recknagel, F., French, M., Harkonen, P., and Yabunaka, K.I. (1994). "Artificial neural network approach for modeling and prediction of algal blooms." J. Ecological Modelling, Vol. 96, pp. 11-28.
  9. Singh, K.P., Basant, A., Malik, A., and Jain, G. (2009). "Artificial neural network modeling of the river water quality-a case study." J. Ecological Modelling, Vol. 220, pp. 888-895. https://doi.org/10.1016/j.ecolmodel.2009.01.004
  10. Wilson, H., Recknagel, F. (2001). "Towards a generic artificial neural network model for dynamic predictions of algal abundance in freshwater lakes." J. Ecological Modelling, Vol. 146, pp. 69-84. https://doi.org/10.1016/S0304-3800(01)00297-6

Cited by

  1. A Study on Water Quality Prediction Model over Midterm Considering Correlation between Water Quality and Hyrologic Factors vol.15, pp.6, 2015, https://doi.org/10.9798/KOSHAM.2015.15.6.459
  2. Analysis on Load of Non-point Source from Sewage Treatment Districts in Nakdong River vol.48, pp.9, 2015, https://doi.org/10.3741/JKWRA.2015.48.9.695
  3. Prediction of short-term algal bloom using the M5P model-tree and extreme learning machine vol.24, pp.3, 2018, https://doi.org/10.4491/eer.2018.245