DOI QR코드

DOI QR Code

The Optimal Condition and Enzyme Activity of Entomopathogenic Fungus Beauveria bassiana Using Extracted Rice Bran

미강추출물을 이용한 곤충병원성 곰팡이 Beauveria bassiana의 최적 배양조건 및 효소활성

  • Kim, Chang-Su (Department of Bioresource Sciences, Andong National University) ;
  • Lee, Jung-Bok (Department of Bioresource Sciences, Andong National University) ;
  • Kim, Beam-Soo (Department of Bioresource Sciences, Andong National University) ;
  • Lee, Min-Hye (Department of Bioresource Sciences, Andong National University) ;
  • Kang, Kyeong-Muk (Department of Bioresource Sciences, Andong National University) ;
  • Joo, Woo-Hong (Department of Biology, Changwon National University) ;
  • Kim, Jin-Won (Yecheon Agriculture Technology Center) ;
  • Im, Dae-Joon (Yecheon Agriculture Technology Center) ;
  • Kwon, Gi-Seok (Department of Bioresource Sciences, Andong National University)
  • 김창수 (안동대학교 생명자원과학과) ;
  • 이중복 (안동대학교 생명자원과학과) ;
  • 김범수 (안동대학교 생명자원과학과) ;
  • 이민혜 (안동대학교 생명자원과학과) ;
  • 강경묵 (안동대학교 생명자원과학과) ;
  • 주우홍 (창원대학교 생물학과) ;
  • 김진원 (예천군 농업기술센터) ;
  • 임대준 (예천군 농업기술센터) ;
  • 권기석 (안동대학교 생명자원과학과)
  • Received : 2013.06.28
  • Accepted : 2013.07.31
  • Published : 2013.08.30

Abstract

The greenhouse whitefly, Bemisia tabaci, is considered one of the most destructive pests of crops. In this study, we aimed to determine the optimal liquid culture conditions in shake flasks for maximal sporulation of Beauveria bassiana M130 using rice bran. The optimal initial pH for the spore production of B. bassiana using extracted rice bran medium was 5.2 and $28^{\circ}C$. The screening in shake flasks of carbon and nitrogen sources resulted in the identification of an optimal medium based on 0.5% $(NH_4)_2SO_4$, with extracted rice bran 8:1. Using this medium, a production level of $2.15{\times}10^9$ spores per ml was obtained after six days from culture inoculation at $28^{\circ}C$ in a rotary shaking incubator at 130 rpm. In addition, the specific activities of extracellular enzymes of chitinase and protease were $4,296{\mu}mol$ and $375{\mu}mol$, respectively. These results suggest that Beauveria bassiana M130 could be a bio-controller for the greenhouse whitefly.

본 연구에서는 온실가루이 방제를 위하여 감염된 이병체로부터 균주 분리 및 농촌진흥청 및 경상북도농업기술원에서 균주를 분양 받아 5 종의 균주를 확보하여, 최종적으로 활성이 가장 높은 분리균주 M130을 선발하였다. Beauveria bassiana M130을 이용하여 균주가 갖는 효소학적 활성을 분석하였다. Chitinase와 protease의 활성을 조사한 결과, 타 균주에 비하여 높은 효소학적 활성을 가지는 조건을 얻었으며, 선발된 균주의 포자생산의 최적화를 위한 방안으로 PDB (potato dextrose broth)배지와 미강추출물을 이용한 ERBM (extracted rice bran medium)을 비교하여, 더 높은 생육도와 포자 생성량을 보인 ERBM을 본 균주를 배양하는 기본배지로 선발하였다. ERBM을 이용한 액체배양시의 최적조건으로, 기본배지인 ERBM에 0.5% $(NH_4)_2SO_4$를 첨가하여 pH 5, $28^{\circ}C$에서 배양최적화를 하였다. 향후 곤충병원성곰팡이 Beauveria bassiana M130의 최적화 조건에 따라 배양을 한다면 포자의 생산량 및 방제효과가 높아질 것으로 사료된다.

Keywords

References

  1. Anson, M. L. 1939. The estimation of pepsin, trypsin, papain, and cathepsin with hemoglobin. J Gen Physiol 22, 79-91.
  2. Campos, R. A., Arruda, W., Boldo, J. T., da Silva, M. V., de Barros, N. M., de Azevedo, J. L., Schrank, A., and Vainstein, M. H. 2005. Boophilus microplus infection by Beauveria amorpha and Beauveria bassiana: SEM analysis and regulation of subtilisin-like proteases and chitinases. Curr Microbiol 50, 257-261. https://doi.org/10.1007/s00284-004-4460-y
  3. Faria, M., and Wraight, S. P. 2001. Biological control of Bemisia tabaci with fungi. Crop Protect 20, 767-778. https://doi.org/10.1016/S0261-2194(01)00110-7
  4. Guzman, P., Arredondo, C. R., Emmatty, D. and Gilbertson, R. L. 1997. Partial characterization of two whitefly-transmitted geminiviruses infecting tomatoes in Venezuela. Plant Dis 81, 312.
  5. Hong, S. G. 2005. Development of immunostimulation materials from rice bran. Food Indu Nutr 10, 42-47.
  6. Jeon, H. Y., Kim, H. H., Yang, C. Y., Kang, T. J., and Kim, D. S. 2009. A tentative economic injury level for greenhouse whitefly on cucumber plant in protective cultivation. Korean J Hort Sci Technol 27, 81-85.
  7. Kim, Y. K. 2011. Development on the plants of solanaceae (Pepper, Eggplant, Tomato). KIC News 14, 28.
  8. Kim, C. S., Lee, J. B., Kim, B. S., Shin, K. S., Kim, J. W. and Kwon, G. S. 2013. A study on prevention technique for the greenhouse whitefly (Trialeurodes vaporariorum) by using entomopathogenic fungi Beauveria bassiana M130. J Micro Biotech Submissions Being Processed.
  9. Kumar, D., Singh, K. P. and Jaiswal, R. K. 2005. Screening of different media and substrates for cultural variability and mass culture of Arthrobotrys dactyloides Drechsler. Mycobiology 33, 215-222. https://doi.org/10.4489/MYCO.2005.33.4.215
  10. Malasis, M. H. and Ravensberg, W. J. 2003. Knowing and Recognizing: The biology of glasshouse pest and their natural enemies. p. 288. Koppert B. V systems and Reed Business Information, Netherlands.
  11. Mathivanan, N., Kabilan, V. and Murugesan, K. 1997. Production of chitinase by Fusarium chlamydosorum, a mycoparasite to groundnut rust, Puccinia arachidis. Indian J Exp Biol 35, 890-893.
  12. Min, E. G. and Han, Y. H. 2002. Optical condition for mycelial growth of Beauveria bassiane and its extracellular enzyme activity. Korean J Microbiol 38, 50-53.
  13. Oh, S. K., Kim, D. J., Chun, A. R., Yoon, M. R., Kim, K. J., Lee, J. S., Hong, H. C. and Kim, Y. K. 2010. Antioxidant compounds and antioxidant activities of ethanol extracts from milling by-products of rice cultivars. J Korean Soc Food Sci Nutr 39, 624-630. https://doi.org/10.3746/jkfn.2010.39.4.624
  14. Pham, T. A. Kim, J. J., Kim, S. G. and Kim, K. 2009. Prodution of blastospore of entomopathogenic Beauveria bassiana in a submerged batch culture. Mycobiology 37, 218-224. https://doi.org/10.4489/MYCO.2009.37.3.218
  15. Sakamoto, N., Tanaka, S., Sonomoto, K. and Nakayama, J. 2011. 16S rRNA pyrosequencing-based investigation of the bacterial community in Nukadoko, a pickling bed of fermented rice bran. Inter J Food Microbiol 144, 352-359. https://doi.org/10.1016/j.ijfoodmicro.2010.10.017
  16. Schmidt, C. G. and Furlong, E. B. 2012. Effect of particle size and ammonium sulfate concentration on rice bran fermentation with the fungus Rhizopus oryzae. Biore Technol 123, 36-41. https://doi.org/10.1016/j.biortech.2012.07.081
  17. Silman, R. W., Nelson, T. C. and Bothast, R. J. 1991. Comparison of culture methods for production of Colletotrichum truncatum spore for use as a mycoherbicide. FEMS Microbiol Lett 79, 69-74. https://doi.org/10.1111/j.1574-6968.1991.tb04507.x
  18. Sun, Y., Liu, W., Han, B., Zhang, J. and Liu, B. 2006. Purification and characterization of two types of chitosanase from a Microbacterium sp. Biotechnol Lett 28, 1393-1399. https://doi.org/10.1007/s10529-006-9101-z
  19. Wang, S. L., Yena, Y. H., Shih, I. L., Chang, A. C., Chang, W. T., Wu, W. C. and Chai, Y. D. 2003. Production of xylanases from rice bran by Streptomyces actuosus A-151. Enzyme Microb Technol 33, 917-925. https://doi.org/10.1016/S0141-0229(03)00246-1
  20. Vega, F. E., Jacson, M. A., Mercadier, G. and Poprawski, T. J. 2003. The impact of nutrition on spore yields for various fungal entomopathogens in liquid culture. World J Microbiol Biotechnol 19, 363-368. https://doi.org/10.1023/A:1023924304456
  21. Yoon, H. G., Shin, T. Y., Yu, M. R., Lee, W. W., Ko, S. H., Bae, S. M., Choi, J. B. and Woo, S. D. 2013. Characterization of entomopathogenic fungus from Trialeurodes vaporariorum and evaluation as insecticide. Korean J Microbiol 49, 64-70. https://doi.org/10.7845/kjm.2013.006

Cited by

  1. Culture Method of Spore for Entomopathogenic Fungus Using Natural Zeolite Ceramic Ball vol.35, pp.1, 2016, https://doi.org/10.5338/KJEA.2016.35.1.08