DOI QR코드

DOI QR Code

Physicochemical Characteristics of Galactomannan by Fractionation to Evaluate Heterogeneity

불균일 성질을 평가하기 위한 분획화된 galactomannan의 이화학적 특성

  • Received : 2013.04.11
  • Accepted : 2013.05.09
  • Published : 2013.08.31

Abstract

Heterogenous samples of locust bean gum (galactomannan) were prepared into homogeneous substances. Locust bean gum was fractioned using ammonium sulfate (14.11-23.08%, w/w). The intrinsic viscosity was obtained by extrapolating reduced viscosity versus concentration by using an Ubbelohde viscometer. The ranges of intrinsic viscosity for fractions that not included protein (F3-F6) and fractions that included protein (F1-F2) were 9.89-8.10 and 8.44-4.59, respectively. Values for Huggins' coefficient (k'), which depends on physical interactions, were 0.46-0.78. Increasing ammonium sulfate concentration was associated with a weak trend towards lower molecular weight and intrinsic viscosity by size-exclusion chromatography (SEC): $M_w$ ranged from 674 to 617 kg/mol and [${\eta}$] from 9.80 to 8.10 dL/g between F3 and F6. The evaluations of those fractions by using SEC and the Ubbelohde viscometer produced very similar values, as predicted. We verified the application of a gradient of ammonium sulfate to precipitate locust bean gum into fractions of different molecular size and show structural variations.

Mannose 기본구조에 galactose 치환체 비율이 4:1인 화학적 구조와 평균 분자량이 1,050 kg/mol인 LBG를 황산암모늄 침전법을 사용하여 분자량 크기별로 분획하여 분획물질들 간에 서로 다른 물리화학적 성질을 확인하였다. 황산암모늄을 맑은 용액에 천천히 첨가한 후 얻어진 침전물을 원심분리에 의해 모집, 탈이온수에 대한 투석 후 동결상태에서 건조시켜서 첫 번째 분획물을 얻었고 동일한 방법으로 각 단계별 분획물을 여섯 단계 까지 얻었다(F1-F6). 수득율은 F1 7.1% 부터 F6 6.35%까지 총 65%였다. 각 분획물들의 묽은 농도범위 0.05 g/dL 이하에서 Ubbelohde viscometer로 흐르는 시간을 측정하여 상대점성도, 비점성도, 유도점성도 및 본성점성도를 구하였으며 그 값은 F1:8.44, F2:4.59, F3:9.89, F4:8.80, F5:8.30, F6:8.10 dL/g이었다. F1과 F2 분획물이 갖는 본성 점성도 값은 기대치보다 작았고 그 원인은 단백질 성분을 포함하는 것으로 판단되어 함량을 측정한 결과 전체 단백질 함량 3.45%중에 F1, F2가 2.59%를 포함하고 있음을 확인하였다. 또한 고분자 물질의 용질-용매간의 상호작용과 응집상태에 의존하는 상태를 나타내는 k' (Hugg. Coeff.)값을 측정한 결과 값의 범위는 0.463-0.781이였고 점성도 값이 클수록 k'값이 커지는 경향을 나타내었다. 분획물들의 체류용량에 대한 RI detector 크로마토그램은 4개의 분획물들의 다당류는 6.0에서 9.0 mL에서 용리되었고 염 혹은 oligomeric sugar 성분은 10에서 11 mL에서 용리되었음을 나타내었다. 중량 평균 분자량, 수 평균 분자량, 회전 반경 및 본성 점성도 값들은 $c_p=0.5mg/mL$, dn/dc = 0.145의 RI 피크면적에 기초를 둔 OmniSEC 프로그램으로 계산되었다. 본성 점성도 값은 F3: 10.15, F4: 9.99, F5: 9.35, F6: 9.31이었고 $M_w$값 범위는 617-674 kg/mol, $M_n$값 범위는 324-423%, recovery 72.44-101.61%였다. Ubbelohde viscometer와 SEC로 측정한 각 분획물들의 본성 점성도 값을 비교한 결과, 측정에 사용한 기기 원리와 계산식의 영향으로 수치에는 미소한 차이가 있었으나 분획물 순서대로 본성점성도가 감소하는 경향은 동일하여 황산암모늄 침전법에 의한 LBG 분획화가 차별화 있게 잘 이루어졌음을 확인하였다. 화학물질에 대한 안정제 및 식품첨가제로 주로 사용되고 있는 LBG 복합물질을 단순물질로 분획화하여 균일한 성분의 물리화학적 성질을 연구한 것은 안정제 및 첨가제의 효과를 높이고 사용범위가 확대될 수 있을 것으로 기대된다.

Keywords

References

  1. Scherbukhin VD, Anulov OV. Legume seed galactomannans. Appl. Biochem. Microbiol. 35: 229-244 (1999)
  2. Chandrasekaran R, Radha A, Okuyama K. Morphology of galactomannans: an X-ray structure analysis of guaran. Carbohyd. Res. 306: 243-255 (1998) https://doi.org/10.1016/S0008-6215(97)00274-7
  3. Daas PJ, Schols HA, de Jongh HH. On the galactosyl distribution of commercial galactomannans. Carbohyd. Res. 329: 609-619 (2000) https://doi.org/10.1016/S0008-6215(00)00209-3
  4. Gaisford SE, Harding SE, Mitchell JR, Bradley TD. A comparison between the hot and cold water soluble fractions of two locust bean gum samples. Carbohyd. Polym. 6: 423-442 (1986) https://doi.org/10.1016/0144-8617(86)90002-0
  5. Srivastava M, Kapoor VP. Seed galactomannan: An overview. Chem. Biodivers. 2: 295-317 (2005) https://doi.org/10.1002/cbdv.200590013
  6. Fernandes PB. Determination of the physical functionality of galactomannans in xanthan gum/galactomannan mixed systems by periodate oxidation. Food Control 5: 244-248 (1994) https://doi.org/10.1016/0956-7135(94)90024-8
  7. Fernandes PB, Goncalves MP, Doublier JL. A rheological characterization of kappa-carrageenan/galactomannan mixed gels: a comparison of locust bean gum samples. Carbohyd. Polym. 16: 253-274 (1991) https://doi.org/10.1016/0144-8617(91)90112-P
  8. Garcia-Ochoa F, Casas JA. Viscosity of locust bean (Ceratonia siliqua) gum solutions. J. Sci. Food Agr. 59: 97-100 (1992) https://doi.org/10.1002/jsfa.2740590114
  9. Mannion RO, Meria CD, Launay B, Cuvelier G, Hill SE, Harding SE. Xanthan/locust bean gum interactions at room temperature. Carbohyd. Polym. 19: 91-97 (1992) https://doi.org/10.1016/0144-8617(92)90118-A
  10. Richardson PH, Clark AH, Russell AL, Aymard P, Norton IT. Galactomannan gelation: A thermal and rheological investigation analyzed using the cascade model. Macromolecules 32: 1519-1527 (1999) https://doi.org/10.1021/ma9810316
  11. Pollard MA, Fisher P. Partial aqueous solubility of low-galactosecontent galactomannans-What is the quantitative basis? Curr. Opin. Colloid. In. 11: 184-190 (2006) https://doi.org/10.1016/j.cocis.2005.12.001
  12. Izydorczyk MS, Billaderis CG. Gradient ammonium sulphate fraction of galactomannans. Food Hydrocolloid. 10: 295-300 (1996) https://doi.org/10.1016/S0268-005X(96)80004-X
  13. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein- dye binding. Anal. Biochem. 72: 248-254 (1976) https://doi.org/10.1016/0003-2697(76)90527-3
  14. Wang Q, Wood PJ, Huang X, Cui W. Preperation and characterization of molecular weigh standards of low polydispersity from oat and barley(1$\rightarrow$3)(1$\rightarrow$4)-$\beta$-D-glucans. Food Hydrocolloid. 17: 845-853 (2003) https://doi.org/10.1016/S0268-005X(03)00105-X
  15. Sittikijyothin W, Torres D, Goncalves MP. Modeling the rheological behaviour of galactomannan aqueous solutions. Carbohyd. Polym. 59: 339-350 (2005) https://doi.org/10.1016/j.carbpol.2004.10.005
  16. Richardson PH, Norton IT. Gelation behavior of concentrated locust bean gum solutions. Macromolecules 31: 1575-1583 (1998) https://doi.org/10.1021/ma970550q
  17. Orford PD, Parker R, Ring SG, Smith AC. Effect of water as a diluent on the glass transition behaviour of malto-oligosaccharides, amylose and amylopection. Int. J. Biol. Macromol. 11: 91-96 (1989) https://doi.org/10.1016/0141-8130(89)90048-2
  18. Pollard MA, Kelly R, Wahl C, Fischer P, Windhab E, Eder B, Amado R. Investigation of equilibrium solubility of a carob galactomannan. Food Hydrocolloid. 21: 683-692 (2006)
  19. Edwards ME, Marshall E, Gidley MJ, Reid JS. Transfer specificity of detergent-solubilized fenugreek galactomannan galactosyltransferase. Plant Physiol. 129: 1391-1397 (2002) https://doi.org/10.1104/pp.002592
  20. Grant Reid JS, Edeards M, Gidley MJ, Clark AH. Enzyme specificity in galactomannan biosynthesis. Planta 195: 489-495 (1995)
  21. Grant Reid JS. Cementing the wall: Cell wall polysaccharide synthesising enzymes Curr. Opin. Plant Biol. 3: 512-516 (2000) https://doi.org/10.1016/S1369-5266(00)00121-7
  22. Alves MM, Garnier C, Lefebvre J, Goncalves MP. Microstrucure and flow behaviour of liquid water-gelatin-locust bean gum systems. Food Hydrocolloid. 15: 117-125 (2001) https://doi.org/10.1016/S0268-005X(00)00058-8
  23. Oblonsek M, Sostar-Turk S, Lapasin R. Rheological studies of concentrated guar gum. Rheol. Acta 42: 491-499 (2003) https://doi.org/10.1007/s00397-003-0304-0
  24. Ross-Murphy SB. Structure-property relationships in food biopolymer gels and solutions. J. Rheol. 39: 1451-1463 (1995) https://doi.org/10.1122/1.550610
  25. Joersbo M, Marcussen J, Brunstedt J. In vivo modification of the cell wall polysaccharide galactomannan of guar transformed with a a-galactosidase gene cloned from senna. Mol. Breeding 7: 211-219 (2001) https://doi.org/10.1023/A:1011375605835
  26. MacCleary BV, Clark AH, Dea ICM, Rees DA. The fine structure of carob and guar galactomannans. Carbohyd. Res. 139: 237-a260 (1985) https://doi.org/10.1016/0008-6215(85)90024-2
  27. Ruiz-Angel MJ, Simo-Alfonso EF, Mongay-fernandez C Ramis- Ramos G. Identification of leguminosae gums and evaluation of carob-guar mixture by capillary zone electrophoresis of protein extracts. Electrophoresis 23: 1709-1715 (2002) https://doi.org/10.1002/1522-2683(200206)23:11<1709::AID-ELPS1709>3.0.CO;2-V
  28. Izawa M, Kano Y, Koshino S. Relationship between structure and solubility of (1$\rightarrow$3)(1$\rightarrow$4)-$\beta$-D-glucan from barley. J. Am. Soc. Brew. Chem. 51: 123-127 (1993)
  29. Morris ER, Culter AN, Ross-Murphy SB, Rees DA, Price J. Concentration and shear rate dependence of viscosity in random coil polysaccharides solutions. Carbohyd. Polym. 1: 5-21 (1981) https://doi.org/10.1016/0144-8617(81)90011-4
  30. Anderson DM. Nitrogen conversion factors for the proteinous content of gums permitted as food additives. Food Addit. Contam. 3: 231-234 (1986) https://doi.org/10.1080/02652038609373585
  31. Wood PJ, Weisz J, Beer MU, Newman CW, Newman RK. Structure of (1$\rightarrow$3)(1$\rightarrow$4)-$\beta$-D-glucan in waxy and non waxy barley. Cereal Chem. 80: 329-332 (2003) https://doi.org/10.1094/CCHEM.2003.80.3.329
  32. Izydorczyk MS, Billaderis CG. Influence of structure on the physicochemical properties of wheat arabinoxylan. Carbohyd. Polym. 17: 237-247 (1992) https://doi.org/10.1016/0144-8617(92)90010-N
  33. Izydorczyk MS, Billaderis CG. Macri LJ, MacGregor AW. Fractionation of oat (1$\rightarrow$3)(1$\rightarrow$4)-$\beta$-D-glucans and characterization of the fractions. J. Cereal Sci. 27: 321-325 (1998) https://doi.org/10.1006/jcrs.1997.0166
  34. Andrede CT, Azero EG, Luciano L, Goncalves MP. Solutions properties of the galactomannan extracted from the seeds of Caesalpinia pulcherrima and Cassia javanica: comparison with locust bean gum. Int. J. Biol. Macromol. 26: 181-185 (1999) https://doi.org/10.1016/S0141-8130(99)00075-6
  35. Doublier JL, Launay B. Rheology of galactomannan solutions: comparative study of guar gum and locust bean gum. J. Texture Stud. 12: 151-172 (1981) https://doi.org/10.1111/j.1745-4603.1981.tb01229.x
  36. da Silva JAL, Goncalves MP. Studies on a purification method for locust bean gum by precipitation with isopropanol. Food Hydrocolloid. 4: 277-287 (1990) https://doi.org/10.1016/S0268-005X(09)80204-X
  37. Robinson G, Ross-Murphy SB, Morris ER. Viscosity-molecular weight relationship, intrinsic chain flexibility and dynamic solution properties of guar galactomannan. Carbohyd. Res. 107: 17-32 (1982) https://doi.org/10.1016/S0008-6215(00)80772-7
  38. Wood PJ, Weisz J, Blackwell BA. tructural studies of (1-3)(1-4)- beta-D-glucans by 13C-nuclear magnetic resonance spectroscopy and by rapid analysis of cellulose-like regions using high-performance anion-exchange chromatography of oligosaccharides released by lichenase. Cereal Chem. 71: 301-307 (1994)
  39. Edwards ME, Marshall E, Gidley MJ, Reid JS. Transfer specificity of detergent-solubilized fenugreek galactomannan galactosyltransferase. Plant Physiol. 129: 1391-1397 (2002) https://doi.org/10.1104/pp.002592

Cited by

  1. Rheological Characteristics and Molecular Weight of Ammonium-Sulfate Fractions of Tara Gum vol.47, pp.3, 2015, https://doi.org/10.9721/KJFST.2015.47.3.293