Abstract
A precision linear motion table plays a crucial role in manufacturing systems used in various industries such as machine tools, semiconductors, and nanofabrication. In particular, one of the most typical mechanisms for a linear motion table is to use a ballscrew and LM guides. However, this mechanism is inevitably influenced by friction because of the relative motion in its joint regions. One of the most complex phenomena in friction is the hysteresis behavior of dynamic friction, which was compared with the steady dynamic friction that was presented using a Stribeck curve in this study. Therefore, we investigated the dynamic friction and its hysteresis behavior using a miniaturized linear table equipped with a ballscrew and LM guides that were lubricated with grease. Subsequently, it could be seen that hysteresis could be considered a time delay after zero-velocity crossing and that it was influenced by acceleration.