DOI QR코드

DOI QR Code

Multiple Linear Regression Model for Prediction of Summer Tropical Cyclone Genesis Frequency over the Western North Pacific

북서태평양 태풍발생빈도 예측을 위한 다중회귀모델 개발

  • Choi, Ki-Seon (National Typhoon Center, Korea Meteorological Administration) ;
  • Cha, Yu-Mi (National Typhoon Center, Korea Meteorological Administration) ;
  • Chang, Ki-Ho (National Typhoon Center, Korea Meteorological Administration) ;
  • Lee, Jong-Ho (National Typhoon Center, Korea Meteorological Administration)
  • Received : 2013.07.05
  • Accepted : 2013.08.14
  • Published : 2013.08.30

Abstract

This study has developed a multiple linear regression model (MLRM) for the seasonal prediction of the summer tropical cyclone genesis frequency (TCGF) over the western North Pacific (WNP) using the four teleconnection patterns. These patterns are representative of the Siberian high Oscillation (SHO) in the East Asian continent, the North Pacific Oscillation (NPO) in the North Pacific, Antarctic oscillation (AAO) near Australia, and the circulation in the equatorial central Pacific during the boreal spring (April-May). This statistical model is verified by analyzing the differences hindcasted for the high and low TCGF years. The high TCGF years are characterized by the following anomalous features: four anomalous teleconnection patterns such as anticyclonic circulation (positive SHO phase) in the East Asian continent, pressure pattern like north-high and south-low in the North Pacific, and cyclonic circulation (positive AAO phase) near Australia, and cyclonic circulation in the Nino3.4 region were strengthened during the period from boreal spring to boreal summer. Thus, anomalous trade winds in the tropical western Pacific (TWP) were weakened by anomalous cyclonic circulations that located in the subtropical western Pacific (SWP) in both hemispheres. Consequently, this spatial distribution of anomalous pressure pattern suppressed convection in the TWP, strengthened convection in the SWP instead.

이 연구는 북서태평양에서 여름철(7-9월) 동안 발생하는 태풍 빈도를 예측하기 위한 다중회귀모델을 4가지 원격패턴을 이용하여 개발하였다. 이 패턴은 4-5월 동안 동아시아 대륙에서의 시베리아 고기압 진동, 북태평양에서의 북태평양 진동, 호주근처의 남극진동, 적도 중앙태평양에서의 대기순환으로 대표된다. 이 통계모델은 이 모델로부터 예측된 높은 태풍발생빈도의 해와 낮은 태풍발생빈도의 해 사이에 차를 분석함으로써 검증되었다. 높은 태풍발생빈도의 해에는 다음과 같은 4가지의 아노말리 특성을 나타내었다: i) 동아시아 대륙에 고기압성 순환 아노말리(양의 시베리아 고기압진동), ii) 북태평양에 남저북고의 기압계 아노말리, iii) 호주 근처에 저기압성 순환 아노말리(양의 남극진동), iv) 봄부터 여름 동안 니뇨3.4 지역에 저기압성 순환 아노말리. 따라서 적도 서태평양에서 무역풍 아노말리는 양반구의 아열대 서태평양에 위치한 저기압성 순환 아노말리에 의해 약화되었다. 결국, 이러한 기압계 아노말리의 공간분포는 열대 서태평양에 대류를 억제하는 대신 아열대 서태평양에 대류를 강화시켰다.

Keywords

References

  1. Chan, J.C.L., Shi, J.E., and Liu, K.S., 2001, Improvements in the seasonal forecasting of tropical cyclone activity over the western North Pacific. Weather and Forecasting, 16, 491-498. https://doi.org/10.1175/1520-0434(2001)016<0491:IITSFO>2.0.CO;2
  2. Chen, T.C., Weng, S.P., Yamazaki, N., and Kiehne, S., 1998, Interannual variation in the tropical cyclone formation over the western North Pacific. Monthly Weather Review, 126, 1080-1089. https://doi.org/10.1175/1520-0493(1998)126<1080:IVITTC>2.0.CO;2
  3. Choi, K.S., Kang, K. R., Kim, D. W., Hwang, H. S., and Lee, S. R., 2009, A study on the characteristics of tropical cyclone passage frequency over the western North Pacific using Empirical Orthogonal Function. Journal of Korean Earth Science Society, 30, 721-733.(In Korea) https://doi.org/10.5467/JKESS.2009.30.6.721
  4. Choi, K.S. and Kim, T.R., 2011a, Development of a diagnostic index on the approach of typhoon affecting Korean Peninsula. Journal of Korean Earth Science Society, 32, 347-359.(In Korea) https://doi.org/10.5467/JKESS.2011.32.4.347
  5. Choi, K.S. and Kim, T.R., 2011b, Regime shift of the early 1980s in the characteristics of the tropical cyclone affecting Korea. Journal of Korean Earth Science Society, 32, 453-460. https://doi.org/10.5467/JKESS.2011.32.5.453
  6. Chu, P.S. and Zhao, X., 2007, A Bayesian regression approach for predicting seasonal tropical cyclone activity over the central North Pacific. Journal of Climate, 20, 4002-4013. https://doi.org/10.1175/JCLI4214.1
  7. Chu, P.S., Zhao, X., Lee, C.T., and Lu, M. M., 2007, Climate prediction of tropical cyclone activity in the vicinity of Taiwan using the multivariate least absolute deviation regression approach. Terrestrial Atmospheric and Oceanic Sciences, 18, 805-825. https://doi.org/10.3319/TAO.2007.18.4.805(A)
  8. Clark, J.D. and Chu, P.S., 2002, Interannual variation of tropical cyclone activity in the central North Pacific. Journal of Meteorological Society of Japan, 80, 403-418. https://doi.org/10.2151/jmsj.80.403
  9. DeMaria, M., Knaff, J.A., and Connell, B.H., 2001, A tropical cyclone genesis parameter for the tropical Atlantic. Weather and Forecasting, 16, 219-233. https://doi.org/10.1175/1520-0434(2001)016<0219:ATCGPF>2.0.CO;2
  10. Fan, K., 2007, North Pacific sea ice cover, a predictor for the western North Pacific typhoon frequency? Science China Series D: Earth Sciences, 50, 1251-1257. https://doi.org/10.1007/s11430-007-0076-y
  11. Gong, D.Y. and Wang, S., 1999, Definition of Antarctic oscillation index. Geophysical Research Letter, 26, 459-462. https://doi.org/10.1029/1999GL900003
  12. Gray, W.M., 1975, Tropical cyclone genesis. Dept. of Atmospheric Science Paper 234, Colorado State University, Fort Collins, CO, 121 pp.
  13. Ho, C.H., Kim J.H., Kim, H.S., Sui, C.H., and Gong, D.Y., 2005, Possible influence of the Antarctic Oscillation on tropical cyclone activity in the western North Pacific. Journal of Geophyical. Research, 110, D19104, doi:10.1029/2005JD005766.
  14. Jeong, Y.K. and Renwick, J.A., 2008, Locations of the Siberian high centers of action and associated propagation of wave-like Patterns in the Northern Hemisphere winter. Asia-Pacific Journal of Atmospheric Sciences, 44, 149-171.
  15. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D., 1996, The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of American Meteorological Society, 77, 437-471. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
  16. McDonnell, K.A. and Holbrook H.J., 2004, A Poisson regression model of tropical cyclogenesis for the Australian-Southwest Pacific Ocean region. Weather and Forecasting, 19, 440-455. https://doi.org/10.1175/1520-0434(2004)019<0440:APRMOT>2.0.CO;2
  17. Rogers, J.C., 1981: The North Pacific oscillation. International Journal of Climatology, 1, 39-57. https://doi.org/10.1002/joc.3370010106
  18. Royer, J.F., Chauvin, F., Timbal, B., Araspin, P., and Grimal, D., 1998, A GCM study of the impact of greenhouse gas increase on the frequency of occurrence of tropical cyclones. Climate Change, 38, 307-343. https://doi.org/10.1023/A:1005386312622
  19. Ryan, B.F., Watterson, I.G., and Evans, J.L., 1992, Tropical cyclone frequencies inferred from Gray's yearly genesis parameter: Validation of GCM tropical climates. Geophysical Research Letters, 19, 1831-1834. https://doi.org/10.1029/92GL02149
  20. Walker, G.T., and Bliss, E.W., 1932, World Weather. Memorial of Royal Meteorological Society, 4, 53-84.
  21. Wang, H.J. and Fan, K., 2007, Relationship between the Antarctic oscillation and the western North Pacific typhoon frequency. Chinese Science Bulletin, 52, 561-565. https://doi.org/10.1007/s11434-007-0040-4
  22. Wang, H.J., Sun, J.Q., and Fan, K., 2007, Relationships between the North Pacific Oscillation and the typhoon/hurricane frequencies. Science in China Series D: Earth Science, 50, 1409-1416. https://doi.org/10.1007/s11430-007-0097-6
  23. Watterson, I.G., Evans, J.L., and Ryan, B.F., 1995, Seasonal and interannual variability of tropical cyclogenesis: Diagnostics from large-scale fields. Journal of Climate, 8, 3052-3066. https://doi.org/10.1175/1520-0442(1995)008<3052:SAIVOT>2.0.CO;2

Cited by

  1. The western Pacific subtropical high and tropical cyclone landfall: Seasonal forecasts using the Met Office GloSea5 system vol.145, pp.718, 2019, https://doi.org/10.1002/qj.3407