DOI QR코드

DOI QR Code

Geochemical Characteristics of the Uljin Granitoids in Northeastern Part of the Yeongnam Massif, Korea

영남육괴 북동부 울진지역 화강암류의 지화학적 특성

  • Wee, SooMeen (Department of Earth Science Education, Korea National University of Education) ;
  • Kim, Ji-Young (Woonam High School) ;
  • Lim, Sung-Man (Department of Earth Science Education, Korea National University of Education)
  • 위수민 (한국교원대학교 지구과학교육과) ;
  • 김지영 (운암고등학교) ;
  • 임성만 (한국교원대학교 지구과학교육과)
  • Received : 2013.07.10
  • Accepted : 2013.08.09
  • Published : 2013.08.30

Abstract

Jurassic granitoids in the northeastern part of the Yeongnam Massif are possibly the result of intensive magmatic activities that occurred in response to subduction of the proto-Pacific plate beneath the northeast portion of the Eurasian plate. Geochemical studies on the granitic rocks are carried out in order to constrain the petrogenesis of the granitic magma and to establish the paleotectonic environment of the area. Whole rock chemical data of the Uljin granitoids in the northeastern part of the Yeongnam Massif indicate that all of the rocks have the characteristics of calcalkaline series in subalkaline field. The overall major element trends show systematic variations in each granitic body, but the source materials of each granitoids seem to have different chemical composition. The Uljin granitoids are different from other granitic rocks, which distributed vicinity of the study area, in the contents of $Al_2O_3$ and trace elements such as Cr, Co, Ni, Sr, Y and Nb. The Uljin granitoids have geochemical features similar to slab-derived adakites such as high $Al_2O_3$, Sr contents and high Sr/Y, La/Yb ratios, but they have low Y and Yb contents. The major ($SiO_2$, $Al_2O_3$, MgO) and trace element (Sr, Y, La, Yb) contents of the Uljin granitoids fall well within the adakitic field. The Uljin granitoids have similar geochemical characteristics, paleotectonic environments and intrusion ages to those of the Yatsuo plutonic rocks of Hida belt located on northwestern part of Japan. Chondrite normalized REE patterns show generally enriched LREEs ($(La/Yb)_{CN}=10.6-103.4$) and are slight negative to flat Eu anomalies. On the ANK vs. A/CNK and tectonic discrimination diagrams, parental magma type of the granites corresponds to I-type and volcanic arc granite (VAG). Interpretations of the chemical characteristics of the granitic rocks favor their emplacement in a compressional tectonic regime at the continental margin during the subduction of Izanagi plate in Jurassic period.

영남육괴 북동부에 분포하는 쥐라기 심성암체들은 유라시아대륙의 동북부지역 아래로 고태평양판의 섭입에 의해서 야기된 활발했던 화성활동의 산물이다. 지화학적 연구를 통하여 이 지역에 분포하는 화강암류의 성인과 지구조환경을 유추하여 보았다. 영남육괴 북동부에 위치하는 울진화강암류는 비알칼리(subalkaline)영역에 속하는 칼크-알칼리(calc-alkaline)계열로, 분화에 따른 주성분원소의 변화 경향은 전반적으로 다른 지역의 쥐라기 화강암류의 분화 경향과 유사하게 나타나지만, 각 암체의 분화경향이나 화학조성을 살펴볼 때 각 암체의 마그마 근원물질은 서로 다른 것으로 사료된다. 울진화강암류는 연구지역 주변에 분포하는 다른 화강암류와 비교하여 $Al_2O_3$의 함량 및 Cr, Co, Ni, Sr, Y, Nb 등 미량원소의 함량에서 뚜렷한 차이를 보인다. 울진화강암류의 지화학적 특징은 높은 $Al_2O_3$, Sr 함량과 높은 Sr/Y, La/Yb비를 가지며, 낮은 Y과 Yb함량과 같은 슬랩용융(slab-melting)으로 생성된 아다카이트에서 흔히 관찰되는 지화학적 특성을 나타낸다. 울진화강암류의 주성분원소($SiO_2$, $Al_2O_3$, MgO) 및 미량원소(Sr, Y, La, Yb) 함량 범위는 아다카이트질 화강암의 범주에 포함되며, 지화학적 특성, 지구조환경 및 관입시기가 일본의 북서부 Hida belt에 위치한 Yatsuo심성암체와 유사하다. 연구지역의 암석의 희토류원소 패턴은 경희토류가 중희토류에 비해 부화($(La/Yb)_{CN}=10.6-103.4$)되어 나타나며, Eu의 부(-)이상을 보이지 않는다. ANK vs. A/CNK과 지구조판별도에서 화강암류의 모마그마는 I-type의 화산호 화강암의 특성을 나타내며, 이자나기(Izanagi)판의 섭입에 의한 압축장 응력이 작용하는 대륙연변부에서 생성된 것으로 해석된다.

Keywords

References

  1. Arakawa, Y. and Shinmura, T., 1995, Nd-Sr isotopic and geochemical characteristics of two contrasting types of calc-alkaline plutons in the Hida belt. Chemical Geology, 124, 217-232. https://doi.org/10.1016/0009-2541(95)00012-B
  2. Arakawa, Y., Saito, Y., and Hiroshi Amakawa, 2000, Crustal development of the Hida belt, Japan: Evidence from Nd-Sr isotopic and chemical characteristics of igneous and metamorphic rocks. Tectonophysics, 328, 183-204. https://doi.org/10.1016/S0040-1951(00)00183-9
  3. Castillo, P.R., Janney, P.E., and Solidum, R.U., 1999, Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology, 134, 33-51. https://doi.org/10.1007/s004100050467
  4. Chang, T.W., 1990, Relative timing of shear zone formation and granite emplacement in the Yechon shear zone, Journal of Korean Institute of Mining Geology, 23, 453-463. (in Korean)
  5. Cheong, C.S. and Chang H.W., 1996a, Geochemistry of the Daebo Granitic Batholith in the Central Ogcheon Belt, Korea: A Preliminary Report. Economic and Environmental Geology, 29, 483-493. (in Korean)
  6. Cheong, C.S. and Chang, H.W., 1996b, Tectonomagmatism, -metamorphism, and -mineralization of the central Ogcheon belt, Korea (I): Sr, Nd and Pb isotopic systematics and geochemistry of granitic rocks in the Boeun area. Journal of the Geological Society of Korea, 32, 91-116. (in Korean)
  7. Cheong, C.S., Kee, W.S., Jeong, Y.J., and Jeong, G.Y., 2006, Multiple deformations along the Honam shear zone in southwestern Korea constrained by Rb-Sr dating of synkinematic fabrics: Implications for the Mesozoic tectonic evolution of northern Asia. Lithos, 87, 289-299. https://doi.org/10.1016/j.lithos.2005.06.015
  8. Cheong, C.S., Kil, Y.W., Kim, J.M., Jung, Y.J., and Im, C.B., 2004, Geochemical characteristics of Precambrian basement rocks in the Jukbyeon area, northeastern Yeongnam massif, Korea. Journal of the Geological Society of Korea, 40, 481-499. (in Korean)
  9. Cheong, C.S. and Kwon, S.T., 1999, Sm-Nd Mineral Ages of Pre-Cretaceous Granitic Rocks in the Northern Gyeongsang Basin, Korea. Journal of the Geological Society of Korea, 35, 159-166. (in Korean)
  10. Choi, S.G., Pak, S.J., Kim, S.W., Kim, C.S., and Oh, C.W., 2006, Mesozoic Gold-Silver Mineralization in South Korea: Metallogenic Provinces Reestimated to the Geodynamic Setting. Economic and Environmental Geoogy, 39, 567-581. (in Korean)
  11. Chon, H.T., Cheong, Y.W., and Son, C.I., 1994, Multivariate Analysis of the Geochmical Data of Tinbearing Granitoids in the Sangdong and the Ulchin Areas, Korea. Economic and Environmental Geology, 27, 237-246. (in Korean)
  12. Chon, H.T. and Son, C.I., 1995, Mineralogical Chemistry of Granitoids and Pegmatites in the Sangdong and the Ulchin Areas. Economic and Environmental Geology, 28, 33-41. (in Korean)
  13. Condie, K.C., 1973, Archean magmatism and crustal thickening. Geological Society of America Bulletin, 84, 2981-2992. https://doi.org/10.1130/0016-7606(1973)84<2981:AMACT>2.0.CO;2
  14. Cullers, R.L. and Graf, J.L., 1984, Rare earth elements in igneous rocks of the continental crust: intermediate and Silicic rocks-ore petrogenesis; in Henderson, P., Rare earth elements geochemistry, Elsevier Science Publication.
  15. Defant, M.J. and Drummond, M.S., 1990, Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347, 662-665. https://doi.org/10.1038/347662a0
  16. Defant, M.J. and Kepezhinskas, P.K., 2001, Evidence suggests slab melting in arc magmas. EOS (Transactions, American Geophysical Union), 82, 65-69.
  17. Frster, H.J., Tischendorf, G., and Trumbull, R.B., 1997, An evaluation of the Rb vs. (Y+Nb) discrimination diagram to infer tectonic setting of licic igneous rocks. Lithos, 40, 261-293. https://doi.org/10.1016/S0024-4937(97)00032-7
  18. Hong, Y.K., 1987, Geochemical Characteristics of Precambrian, Jurassic and Cretaceous Granites in Korea. Journal of Korean Institute of Mining Geology, 20, 35-60. (in Korean)
  19. Irivine, T.N. and Baragar, W.R.A., 1971, A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Science, 8, 523-548. https://doi.org/10.1139/e71-055
  20. Ishihara, S., Jin, M.S., and Terashima, S., 2005, Mo-related Adakitic Granitoids from Non-island-arc Setting: Jecheon Pluton of South Korea. Resource Geology, 55, 385-396. https://doi.org/10.1111/j.1751-3928.2005.tb00259.x
  21. Jin, M.S., 1980, Geology and Isotopic Contrasts of the Jurassic and the Cretaceous Granites in South Korea. Journal of the Geological Society of Korea, 16, 205-215.
  22. Jin, M.S., 1986, Ca, Na, K, Rb, Zr, Nb and Y abundances of the Cretaceous to Early Tertiary granitic rocks in Southern Korea and their tectonic implications. Memoir for Prof. Lee, S. M.'s 60th Birthday, 195-209. (in Korean)
  23. Jin, M.S. and Jang, B.A., 1999, Thermal history of the Late Triassic to Early Jurassic Yeongju-Chunyang Granitoid in the Sobaegsan Massif, South Korea, and its Tectonic Implication. Journal of the Geological Society of Korea. 35, 189-200. (in Korean)
  24. Jin, M.S., Shin, H.J., and Kwon, S.K., 2005, Igneous rocks and igneous activities in the Korean peninsula. Korea Institute of Geoscience and Mineral Resources, Dae jeon, Korea, 310 p. (in Korean)
  25. Jwa, Y.J., 1996, Petrochemistry and magma process of Jurassic Boeun granodiorite in the central Ogcheon belt. Journal of the Petrological Society of Korea, 5, 188-199. (in Korean)
  26. Kang, J.H., Kim, N.H., Song, Y.S., and Park, K.H., 2006, Deformation history of Precambrian metamorphic rocks of Sobaegsan Massif in Giseong-myeon area, Uljin-gun, Gyeongsangbuk-do, Korea. Journal of the Petrological Society of Korea, 15, 49-59. (in Korean)
  27. Kay, R.W., 1978, Aleutian magnesian andesites; melts from subducted Pacific Ocean crust. Journal of Volcanology and Geothermal Research, 4, 117-132. https://doi.org/10.1016/0377-0273(78)90032-X
  28. Kim, J.H., Cheong, S.W., and Kihm, Y.H., 2000, Geological Structures of the Southern Jecheon, Korea. Journal of the Korean Earth Science Society, 21, 302-314. (in Korean)
  29. Kim, J.W. and Lee, Y.J., 1993, Phase Transition of K - feldspar in the Plutonic Rocks from the Vicinity of Yongdok - Uljin Area, Northeastern Gyeongsang Basin, Korea. Journal of the Korean Earth Science Society, 14, 316-325. (in Korean)
  30. Kim, K.H., 1992, Geochemical Study of Some Mesozoic Granitic Rocks in South Korea. Journal of the Korean Institute of Mining Geology, 25, 435-446. (in Korean)
  31. Kim, N.H., Park, K.H., Song, Y.S., and Kang, J.H., 2002, A note on absence of Giseong Series and relation of Precambrian Pyeonghae Series and Wonnam Series of Pyeonghae-Uljin area. Journal of the Petrological Society of Korea, 11, 271-277. (in Korean)
  32. Kim, S.J., Noh, J.H., and Choi, J.B., 1988, Crystal Chemisty of Ca - Garnets from Ulchin Pb - Zn Deposits. Journal of Mineralogical Society of Korea, 1, 20-31. (in Korean)
  33. Kim, Y.J., Cho, D.L., and Hong, S.S., 1986, Petrochemical Study of Alkali Granite in northern Area of the Uljin Mine. Journal of the Korean Institute of Mining Geology, 19, 123-131. (in Korean)
  34. Lee, K.M. and Lim, B.Y., 2001, Detailed investigation report (limestone - Uljin area). Korea Resources Corporation. (in Korean)
  35. Lee, J.I. and Lee, M.S., 1991, Mineralogy and petrology on the granitic rocks in the Youngju area, Kyoungsang Buk-Do, Korea. Journal of the Geological Society of Korea, 27, 626-641. (in Korean)
  36. Lee, S.M., Kim, H.S., and Oh, I.S., 1986, Metamorphic Petrology of Precambrian Gneisses in Samcheok Jukbyeon Area. Journal of the Geological Society of Korea, 22, 257-277. (in Korean)
  37. Maniar, P.D. and Piccoli, P.M., 1989, Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101, 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
  38. Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F., and Champion, D., 2005, An overview of adakite, tonalitetrondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos, 79, 1-24. https://doi.org/10.1016/j.lithos.2004.04.048
  39. Maruyama, S., Isozaki, Y., Kimura, G., and Terabayashi, M., 1997, Paleogeographic maps of the Japanses Islands: Plate tectonic synthesis from 750 Ma to the present. The Island Arc, 6, 121-142 https://doi.org/10.1111/j.1440-1738.1997.tb00043.x
  40. Moon, S.H. and Park, H.I., 1994, Alterations of Granite Gneiss and their Genetic Relationship to Tin Mineralization in the Uljin Area. Journal of the Geological Society of Korea, 30, 125-139. (in Korean)
  41. Oh, C.W., 2006, A new concept on tectonic correlation between Korea, China and Japan: Histories from the late Proterozoic to Cretaceous. Gondwana Research, 9, 47-61. https://doi.org/10.1016/j.gr.2005.06.001
  42. Park, H.I. and Lee, S.M., 1984, Tin, Tungsten Mineralization in Bonghwa -Uljin Area. Journal of the Korean Institute of Mining Geology, 17, 1-15. (in Korean)
  43. Pearce, J.A., Harris, N.B.W., and Tindle, A.G., 1984, Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956-983. https://doi.org/10.1093/petrology/25.4.956
  44. Sagong, H., Kwon, S.T., Cho, D.R., and Jwa, Y.J., 2005, Relative Magma Formation Temperatures of the Phanerozoic Granitoids in South Korea Estimated by Zircon Saturated Temperature. Journal of the Petrological Society of Korea, 14, 83-92. (in Korean)
  45. Sajona, F.G., Maury, R.C., Pubellier, M., Leterrier, J., Bellon, H., and Cotten, J., 2000, Magmatic source enrichment by slab-derived melts in a young postcollision setting, central Mindanao (Philippines). Lithos, 54, 173-206. https://doi.org/10.1016/S0024-4937(00)00019-0
  46. Sun, S.S. and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalt: implications for mantle composition and processes. In: Magmatism in the ocean basins. Geological Society Special Publication, 42, 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
  47. Taylor, S.R., 1965, The application of trace element data to problems petrology. Physics and chemistry of the Earth, 6, 133-213. https://doi.org/10.1016/0079-1946(65)90014-5
  48. Tsusue, A., Dai, K., Mizuta, T., and Tamai, T., 1990, A comparision of Jurassic granitoids between the Hida belt and South Korea. Mining Geology, 40, 365-384.
  49. Wang, Q., McDermott, F., Xu, J.F., Bellon, H., and Zhu, Y.T., 2005, Cenozoic K-rich adakitic volcanics in the Hohxil area, northern Tibet: lower crustal melting in an intracontinental setting. Geology, 33, 465-468. https://doi.org/10.1130/G21522.1
  50. Wee, S.M., Choi, S.G., Ryu, I.C., and Shin, H.J., 2006, Geochemical Characteristics of the Cretaceous Jindong Granites in the Southwestern Part of the Gyeongsang Basin, Korea: Focussed on Adakitic Signatures. Economic and Environmental Geology, 39, 555-566. (in Korean)
  51. Wee, S.M. and Park, J.Y., 2009, Geochemistry and petrogenesis of adakitic granitoids from Bognae area in the southwestern part of the Yeongnam Massif, Korea. Journal of the Korean Earth Science Society, 30, 427-443. (in Korean) https://doi.org/10.5467/JKESS.2009.30.4.427
  52. White, A.J.R. and Chapell, B.W., 1983, Granitoid types and their distribution in the Lanchlan Fold belt, south east Australia. Geological Society of America, Memoir, 159, 21-33. https://doi.org/10.1130/MEM159-p21
  53. Yun, H.S., Kim, D.O. and Park, S.H., 1999, Geochemical characteristics of Ogcheon granite in Ogcheon area. Journal of the Petrological Society of Korea, 8, 81-91. (in Korean)
  54. Yun, H.S. and Hong, S.S., 2003, Geochemistry of granites in the southern Gimcheon area of Korea. Journal of the Petrological Society of Korea, 12, 16-31. (in Korean)
  55. Yun, S.C. and Shin, B.W., 1963, 1/50000 scale Explanatory text of the Geological map of Uljin Area. Geological Survey of Korea, 27 p. (in Korean)

Cited by

  1. Petrological characteristics of the Yeongdeok granite vol.23, pp.2, 2014, https://doi.org/10.7854/JPSK.2014.23.2.31
  2. Early Jurassic granitoids from deep drill holes in the East China Sea Basin: implications for the initiation of Palaeo-Pacific tectono-magmatic cycle pp.1938-2839, 2018, https://doi.org/10.1080/00206814.2017.1351312