References
- Kashiwada S, Ariza ME, Kawaguchi T, Nakag-ame Y, Jayasinghe BS, Gartner K, et al. Silver nanocolloids disrupt medaka embryogenesis through vital gene expressions. Environ Sci Technol, 2012; 46(11): 6278-6287. https://doi.org/10.1021/es2045647
- Wu Y, Zhou Q, Li H, Liu W, Wang T, Jiang G. Effects of silver nanoparticles on the development and histopathology biomarkers of Japanese medaka (Oryzias latipes) using the partial-life test. Aquat Toxicol, 2010; 100(2): 160-167. https://doi.org/10.1016/j.aquatox.2009.11.014
- Rosso KM. Nanoparticles and the environment. Clays Clay Miner, 2002; 50(5): 681-682. https://doi.org/10.1346/000986002320679404
- Chung-Sik Y. Consideration of Nano-Measurement Strategy. J Environ Health Sci, 2011; 37(1): 73-79.
- Kahru A, Dubourguier H-C. From ecotoxicology to nanoecotoxicology. Toxicology, 2010; 269(2-3): 105-119. https://doi.org/10.1016/j.tox.2009.08.016
- Chae YJ, Pham CH, Lee J, Bae E, Yi J, Gu MB. Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes). Aquat Toxicol, 2009; 94(4): 320-327. https://doi.org/10.1016/j.aquatox.2009.07.019
- Choi JE, Kim S, Ahn JH, Youn P, Kang JS, Park K, et al. Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat Toxicol, 2010; 100(2): 151-159. https://doi.org/10.1016/j.aquatox.2009.12.012
- Bilberg K, Hovgaard MB, Besenbacher F, Baatrup E. In vivo toxicity of silver nanoparticles and silver ions in zebrafish (Danio rerio). J Toxicol, 2012; 2012.
- Griffitt RJ, Luo J, Gao J, Bonzongo JC, Barber DS. Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem, 2008; 27(9): 1972-1978. https://doi.org/10.1897/08-002.1
- OECD. Fish, Early-life Stage Toxicity Test. OECD press; 1992. p.1-18.
- US EPA. Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms, 5th ed. Washington DC: EPA press; 2002. p1-30.
- Rice EW, Baird RB, Daton AD, Clesceri L. Standard methods for the examination of water and wastewater, 18th ed. Washington, DC: APHA-AWWA- WPCF press; 1992. p.1160.
- Luyts K, Napierska D, Nemery B, Hoet PHM. How physico-chemical characteristics of nanoparticles cause their toxicity: complex and unresolved interrelations. Environ Sci: Processes Impacts, 2013; 15(1): 23-38. https://doi.org/10.1039/c2em30237c
- Sanderson S, Stebar M, Ackermann K, Jones S, Batjakas I, Kaufman L. Mucus entrapment of particles by a suspension-feeding tilapia (Pisces: Cichlidae). J Exp Bio, 1996; 199(8): 1743-1756.
- Playle RC. Modelling metal interactions at fish gills. Sci Total Environ, 1998; 219(2-3): 147-163. https://doi.org/10.1016/S0048-9697(98)00232-0
- Zia S, McDonald DG. Role of the gills and gill chloride cells in metal uptake in the freshwateradapted rainbow trout, Oncorhynchus mykiss. Can J Fish Aquat Sci, 1994; 51: 2482-2492. https://doi.org/10.1139/f94-247
- Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D, et al. Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Technol, 2007; 41: 8178-8186. https://doi.org/10.1021/es071235e
- Tao S, Long A, Dawson RW, Xu F, Li B, Cao J, et al. Copper speciation and accumulation in the gill microenvironment of carp (Cyprinus carpio) in the presence of kaolin particles. Arch Environ Contam Toxicol, 2002; 42(3): 325-31. https://doi.org/10.1007/s00244-001-0022-5