DOI QR코드

DOI QR Code

Fabrication of Mg3Sb2 and Mg3Bi2 Compounds and their composites by mechanical alloying

기계적 합금법에 의한 Mg3Bi2와 Mg3Sb2 화합물 및 복합체의 제조

  • Kim, In-Ki (Department of Materials Science and Engineering, Hanseo University)
  • 김인기 (한서대학교 신소재공학과)
  • Received : 2013.07.31
  • Accepted : 2013.08.14
  • Published : 2013.08.31

Abstract

Single phase crystalline powders of $Mg_3Sb_2$ and $Mg_3Bi_2$ were prepared by mechanical alloying Mg, Sb and Bi metals with planetary ball milling for 24~48 h. The compositions of starting raw materials for single phase $Mg_3Sb_2$ and $Mg_3Bi_2$ were 3Mg : 1.8Sb and 3Mg : 1.6Bi, respectively. Two types of mechanically alloyed powders obtained were mixed at some ratios for the fabrication of $Mg_3Sb_2-Mg_3Bi_2$ composites and then hot pressed under uniaxial pressure of 70 MPa at 723 K for 1 h. The main phase of composites was a stable phase similar to $Mg_3Bi_2$ phase with a small amount of Bi phase. The distributions of Sb and Bi elements on EDS mapping images were discontinuous and their compositional contours were clear, which means that the hot pressed specimens were composites composed of two compounds of $Mg_3Sb_2$ and $Mg_3Bi_2$.

기계적 합금법을 이용하여 Mg, Sb, Bi을 planetary 볼밀에서 24~48시간 볼 밀링하여 $Mg_3Sb_2$$Mg_3Bi_2$ 단일 결정상의 합금분말을 얻었다. 출발조성은 $Mg_3Sb_2$상의 경우 3Mg : 1.8Sb, $Mg_3Bi_2$상은 3Mg : 1.6Bi이었다. 얻어진 두 합금 분말을 여러 비율로 혼합하여 70 MPa의 압력 하, 723 K에서 1시간 가압소결하여 $Mg_3Sb_2-Mg_3Bi_2$ 복합체를 제조하였다. 복합체의 주 결정상은 $Mg_3Bi_2$상과 유사한 안정한 상이었고 미량의 Bi상이 존재하였다. EDS 맵핑결과 가압소결체들의 조성분포는 불연속적이며 독립적으로 나타나서 $Mg_3Sb_2-Mg_3Bi_2$계 복합체가 제조되었다는 것을 확인할 수 있었다.

Keywords

References

  1. B.L. Mordike and T. Ebert, "Magnesium properties-applications-potential", Mater. Sci. & Eng. A302 (2001) 37.
  2. J.E. Enderby and E.W. Collings, "The classification of liquid semiconductors", J. Non-Cryst. Solids 4 (1970) 161. https://doi.org/10.1016/0022-3093(70)90033-5
  3. W.S. Howells, A.C. Barnes and M. Hamiton, "Quasielastic neutron scattering and the dynamics of $Mg^{2+}$ in the fast ion and liquid phases of $Mg_3Bi_2$", Physica B 266 (1999) 97. https://doi.org/10.1016/S0921-4526(98)01499-9
  4. T. Kajikawa, N. Kimura and T. Yokoyama, "Thermo-electric properties of intermetallic compounds: $Mg_3Bi_2$ and $Mg_3Sb_2$ for medium temperature range thermoelectricelements", Proc. the 22nd Int. Conf. on Thermoelectrics (2003) 305.
  5. H.X. Xin, X.Y. Qin1, X.G. Zhu and Y. Liu, "Temperature dependence of electrical resistivity for nanocrystalline $Mg_{3+x}Sb_2$ prepared by mechanical alloying", J. Phys. D Appl. Phys. 39 (2006) 375. https://doi.org/10.1088/0022-3727/39/2/020
  6. F. Ahmadpour, T. Kolodiazhnyi and Y. Mozharivsky, "Structural and physical properties of $Mg_{3-x}Zn_xSb_2$ (x = 0-1.34)", J. Solid State Chem. 180 (2007) 2427.
  7. A.A. Nayeb-Hashemi and J.B. Clark, "The Bi-Mg (Bismuth-Mangnesium) system", Bulletin of Alloy Phase Diagrams 6(6) (1985) 528. https://doi.org/10.1007/BF02887150
  8. M. Paliwal and I.H. Jung, "Computer coupling of phase diagrams and thermochemistry", CALPHAD 33 (2009) 744. https://doi.org/10.1016/j.calphad.2009.10.002
  9. C.L. Condron, S.M. Kauzlarich, F. Gascoin and G.J. Snyder, "Thermoelectric properties and microstructure of $Mg_3Sb_2$", J. Solid State Chem. 179 (2006) 2253.
  10. T. Kajikawa, N. Kimura and T. Yokoyama, "Thermoelectric properties of intermetallic compounds: $Mg_3Bi_2$ and $Mg_3Sb_2$ for medium temperature range thermoelectric elements", Proc. the 22nd Int. Conf. on Thermoelectrics (2003) 305.
  11. H.X. Xin, X.Y. Qin, X.G. Zhu, J. Zhang and M.G. Kong, "Fabrication of nanocrystalline $Mg_3X_2$ (X = Bi, Sb) with supersaturated solid solubility by mechanical alloying", Mater. Sci. Eng. B 128 (2006) 192. https://doi.org/10.1016/j.mseb.2005.12.001
  12. C. Suryanarayana, E. Ivanov and V.V. Boldyrev, "The science and technology of mechanical alloying", Mater. Sci. Eng. A 304-306 (2001) 151. https://doi.org/10.1016/S0921-5093(00)01465-9
  13. Y.S. Kwon, K.B. Gerasimov and S.K. Yoon, "Ball temperatures during mechanical alloying in planetary mills", J. Alloys and Compounds 346 (2002) 276. https://doi.org/10.1016/S0925-8388(02)00512-1

Cited by

  1. vol.24, pp.4, 2014, https://doi.org/10.6111/JKCGCT.2014.24.4.176