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abstract. We study the uniqueness of meromorphic functions concerning nonlinear dif-

ferential polynomials sharing a nonzero polynomial IM. Though the main concern of the

paper is to improve a recent result of the present author [12], as a consequence of the main

result we also generalize two recent results of X. M. Li and L. Gao [11].

1. Introduction, Definitions and Results

In this paper, by meromorphic functions we will always mean meromorphic
functions in the complex plane. We adopt the standard notations in the Nevan-
linna theory of meromorphic functions as explained in [7], [15] and [16]. For a
nonconstant meromorphic function h, we denote by T (r, h) the Nevanlinna charac-
teristic of h and by S(r, h) any quantity satisfying S(r, h) = o{T (r, h)} as r → ∞
possibly outside a set of finite linear measure. A meromorphic function a(z)(6≡ ∞)
is called a small function with respect to f , provided that T (r, a) = S(r, f).

Let f and g be two nonconstant meromorphic functions, and let a be a finite
value. We say that f and g share the value a CM (counting multiplicities), provided
that f−a and g−a have the same set of zeros with the same multiplicities. Similarly,
we say that f and g share a IM (ignoring multiplicities), provided that f − a and
g − a have the same set of zeros ignoring multiplicities.

In 1959, W. K. Hayman (see [6], Corollary of Theorem 9) proved the following
theorem:

Theorem A. Let f be a transcendental meromorphic function and n(≥ 3) is an
integer. Then fnf ′ = 1 has infinitely many solutions.

Corresponding to Theorem A, C. C. Yang and X. H. Hua [14] proved the fol-
lowing result.

Theorem B. Let f and g be two nonconstant meromorphic functions, n ≥ 11
be a positive integer. If fnf ′ and gng′ share 1 CM, then either f(z) = c1e

cz,
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g(z) = c2e
−cz, where c1, c2 and c are three constants satisfying (c1c2)n+1c2 = −1

or f ≡ tg for a constant t such that tn+1 = 1.

In 2000, M. L. Fang [4] proved the following result:

Theorem C. Let f be a transcendental meromorphic function, and let n be a
positive integer. Then fnf ′ − z = 0 has infinitely many solutions.

Corresponding to Theorem C, the following result was proved by M. L. Fang
and H. L. Qiu [5].

Theorem D. Let f and g be two nonconstant meromorphic functions, and let
n ≥ 11 be a positive integer. If fnf ′ − z and gng′ − z share 0 CM, then either
f(z) = c1e

cz2

, g(z) = c2e
−cz2

, where c1, c2 and c are three nonzero complex numbers
satisfying 4(c1c2)n+1c2 = −1 or f = tg for a complex number t such that tn+1 = 1.

In 2003, W. Bergweiler and X.C. Pang [3] proved the following result:

Theorem E. Let f be a transcendental meromorphic function, and let R 6≡ 0 be
a rational function. If all zeros and poles of f are multiple, except possibly finitely
many, then f ′ −R = 0 has infinitely many solutions.

The question arises:

Question 1. Is there exist a uniqueness theorem corresponding to Theorem E,
similar to Theorems B and D?

Recently X. M. Li and L. Gao [11] proved the following uniqueness theorems
that deals with Question 1.

Theorem F. Let f and g be two transcendental meromorphic functions, let n ≥ 11
be a positive integer, and let P 6≡ 0 be a polynomial with its degree γP ≤ 11. If
fnf ′ − P and gng′ − P share 0 CM, then either f = tg for a complex number t
satisfying tn+1 = 1, or f = c1e

cQ and g = c2e
−cQ, where c1, c2 and c are three

nonzero complex numbers satisfying (c1c2)n+1c2 = −1, Q is a polynomial satisfying
Q =

∫ z

0
P (η)dη.

Theorem G. Let f and g be two transcendental meromorphic functions, let n ≥ 15
be a positive integer, and let P 6≡ 0 be a polynomial. If (fn(f − 1))′ − P and
(gn(g − 1))′ − P share 0 CM and Θ(∞, f) > 2/n, then f = g.

However questions arise in one’s mind which are the motive of the author.

Question 2. Is it possible to obtain the similar result as in Theorems F and G if
the sharing value is relaxed from CM to IM ?

Question 3. What happened if one consider kth derivative instead of first in
Theorems F and G?

Considering k th derivative, recently the present author [12] proved the following
theorem.
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Theorem H. Let f and g be two transcendental meromorphic functions, and let
n(≥ 1), k(≥ 1) and m(≥ 1) be three integers. Let [fn(f−1)m](k) and [gn(g−1)m](k)

share the value 1 IM. Then one of the following holds:
(i) when m = 1, n > 9k + 20 and Θ(∞, f) > 2

n , then either [fn(f − 1)m](k)[gn(g −
1)m](k) ≡ 1 or f ≡ g;
(ii) when m ≥ 2 and n > 9k+4m+16, then either [fn(f−1)m](k)[gn(g−1)m](k) ≡ 1
or f ≡ g or f and g satisfy the algebraic equation R(f, g) = 0, where

R(x, y) = xn(x− 1)m − yn(y − 1)m.

The possibility [fn(f − 1)m](k)[gn(g − 1)m](k) ≡ 1 does not arise for k = 1.

So it is natural to ask the question:

Question 4. What can be said if we replace the sharing value 1 in the above
theorem by a nonzero polynomial?

In the paper, we shall try to find out the possible solution of the above three
questions. We will prove two theorems of which second one will not only improve
and generalize Theorem H and at the same time provide a supplementary and
generalize result of Theorem G. Our first theorem will supplement and generalize
Theorem F. The following theorems are the main results of the paper.

Theorem 1. Let f and g be two transcendental meromorphic functions, let n, k be
two positive integers such that n ≥ 9k + 15, and let P 6≡ 0 be a polynomial with its
degree γP ≤ n− 1. Let (fn)(k) − P and (gn)(k) − P share 0 IM. Then
(i) if k = 1, either f = tg for a complex number t satisfying tn = 1 or f = c1e

cQ

and g = c2e
−cQ, where c1, c2 and c are three nonzero complex numbers satisfying

(c1c2)nc2 = −1, Q is a polynomial satisfying Q =
∫ z

0
P (η)dη;

(ii) if k ≥ 2, either (fn)(k)(gn)(k) = P 2 or f = tg for a complex number t satisfying
tn = 1.

Theorem 2. Let f and g be two transcendental meromorphic functions, let n, m,
k be three positive integers, and let P 6≡ 0 be a polynomial. If (fn(f − 1)m)(k) − P
and (gn(g − 1)m)(k) − P share 0 IM, then each of the following holds:
(i) when m = 1, n > 9k + 20 and Θ(∞, f) + Θ(∞, g) > 4/n, then either (fn(f −
1)m)(k)(gn(g − 1)m)(k) = P 2 or f = g;
(ii) when m ≥ 2 and n > 9k+4m+16, then either (fn(f−1)m)(k)(gn(g−1)m)(k) =
P 2 or f = g or f and g satisfy the algebraic equation R(f, g) = 0, where

R(x, y) = xn(x− 1)m − yn(y − 1)m.

The possibility (fn(f − 1)m)(k)(gn(g − 1)m)(k) = P 2 does not arise for k = 1.

We now explain some definitions and notations which are used in the paper.

Definition 1([9]). For a ∈ C ∪ {∞} we denote by N(r, a; f |= 1) the counting
functions of simple a-points of f . For a positive integer p we denote by N(r, a; f |≤
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p) the counting function of those a-points of f (counted with proper multiplicities)
whose multiplicities are not greater than p. By N(r, a; f |≤ p) we denote the
corresponding reduced counting function.

Analogously we can define N(r, a; f |≥ p) and N(r, a; f |≥ p).

Definition 2([8]). Let p be a positive integer or infinity. We denote by Np(r, a; f)
the counting function of a-points of f , where an a-point of multiplicity m is counted
m times if m ≤ p and p times if m > p. Then

Np(r, a; f) = N(r, a; f) +N(r, a; f |≥ 2) + ...+N(r, a; f |≥ p).

Clearly N1(r, a; f) = N(r, a; f).

Definition 3. For a ∈ C ∪ {∞} we define

δp(a, f) = 1− lim sup
r−→∞

Np(r, a; f)

T (r, f)

and

Θ(a, f) = 1− lim sup
r−→∞

N(r, a; f)

T (r, f)
,

where p is an arbitrary nonnegative integer.

Remark 1. From the above definition it is clear that

0 ≤ δp(a, f) ≤ δp−1(a, f) ≤ δ1(a, f) ≤ Θ(a, f) ≤ 1.

Definition 4([1, 2]). Let f and g be two nonconstant meromorphic functions such
that f and g share the value 1 IM. Let z0 be a 1-point of f with multiplicity p
and also a 1-point of g with multiplicity q. We denote by NL(r, 1; f) the reduced

counting function of those 1-points of f and g, where p > q, by N
1)
E (r, 1; f) the

counting function of those 1-points of f and g, where p = q = 1, by N
(2

E (r, 1; f) the
reduced counting function of those 1-points of f and g, where p = q ≥ 2. Similarly

we can define NL(r, 1; g), N
1)
E (r, 1; g) and N

(2

E (r, 1; g).

2. Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 1([13]). Let f be a transcendental meromorphic function, and let Pn(f)
be a differential polynomial in f of the form

Pn(f) = anf
n(z) + an−1f

n−1(z) + ...+ a1f(z) + a0,

where an( 6= 0), an−1, ... , a1, a0 are complex numbers. Then

T (r, Pn(f)) = nT (r, f) +O(1).
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Lemma 2([17]). Let f and g be two nonconstant meromorphic functions, and let
p, k be two positive integers. Then

Np(r, 0; f (k)) ≤ Np+k(r, 0; f) + kN(r,∞; f) + S(r, f).

Lemma 3([7, 15]). Let f be a transcendental meromorphic function, and let a1(z),
a2(z) be two distinct meromorphic functions such that T (r, ai(z)) = S(r, f), i=1,2.
Then

T (r, f) ≤ N(r,∞; f) +N(r, a1; f) +N(r, a2; f) + S(r, f).

Lemma 4([7]). Let f be a nonconstant meromorphic function, k be a positive
integer, and let c be a nonzero finite complex number. Then

T (r, f) ≤ N(r,∞; f) +N(r, 0; f) +N(r, c; f (k))−N(r, 0; f (k+1)) + S(r, f)

≤ N(r,∞; f) +Nk+1(r, 0; f) +N(r, c; f (k))−N0(r, 0; f (k+1)) + S(r, f),

where N0(r, 0; f (k+1)) denotes the counting function which only counts those points
such that f (k+1) = 0 but f(f (k) − c) 6= 0.

Lemma 5. Let f and g be two transcendental meromorphic functions such that
f (k)−P and g(k)−P share 0 IM, where k is a positive integer, P 6≡ 0 is a polynomial.
If

∆1 = (2k + 4)Θ(∞, f) + (2k + 3)Θ(∞, g) + Θ(0, f) + Θ(0, g)(2.1)

+3δk+1(0, f) + 2δk+1(0, g) > 4k + 13

and

∆2 = (2k + 4)Θ(∞, g) + (2k + 3)Θ(∞, f) + Θ(0, g) + Θ(0, f)(2.2)

+3δk+1(0, g) + 2δk+1(0, f) > 4k + 13,

then either f (k)g(k) = P 2 or f = g.

Proof. Since f and g are two transcendental meromorphic functions, f (k) and g(k)

are also two transcendental meromorphic functions. Let

F =
f (k)

P
, G =

g(k)

P
,

and let

H =

(
F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G− 1

)
.(2.3)
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Let z0 6∈ {z : P (z) = 0} be a common simple zero of f (k) − P and g(k) − P . Then
z0 is a common simple zero of F − 1 and G− 1. Substituting their Taylor series at
z0 into (2.3), we see that z0 is a zero of H. Thus we have

N
1)
E (r, 1;F ) ≤ N(r, 0;H) ≤ T (r,H) +O(1)(2.4)

≤ N(r,∞;H) + S(r, F ) + S(r,G).

Let z1 6∈ {z : P (z) = 0} be a pole of H. Then from (2.3) we can see that H have
poles only at the zeros of F ′ and G′, 1-points of F whose multiplicities are not equal
to the multiplicities of the corresponding 1-points of G, and poles of f and g. Hence
we have

N(r,∞;H) ≤ N(r,∞; f)+N(r,∞; g)+N(r, 0; f)+N(r, 0; g)+NL(r, 1;F )(2.5)

+NL(r, 1;G)+N0(r, 0;F ′)+N0(r, 0;G′)+O(log r),

where N0(r, 0;F ′) denotes the counting function of those zeros of F ′ which are not
the zeros of f(F − 1), N0(r, 0;G′) is similarly defined. Since f is a transcendental
meromorphic functions we have

T (r, P ) = o{T (r, f)}.(2.6)

By Lemma 4, we have

T (r, f) ≤ N(r,∞; f) +Nk+1(r, 0; f) +N(r, 1;F )(2.7)

−N0(r, 0;F ′) + S(r, f).

Similarly

T (r, g) ≤ N(r,∞; g) +Nk+1(r, 0; g) +N(r, 1;G)(2.8)

−N0(r, 0;G′) + S(r, g).

Since f (k) − P and g(k) − P share 0 IM, therefore using (2.4) and (2.5) we obtain

N(r, 1;F ) +N(r, 1;G) = 2N
1)
E (r, 1;F ) + 2NL(r, 1;F ) + 2NL(r, 1;G)(2.9)

+2N
(2

E (r, 1;F )

≤ N
1)
E (r, 1;F ) +N(r,∞; f) +N(r,∞; g)

+N(r, 0; f) +N(r, 0; g) + 3NL(r, 1;F )

+3NL(r, 1;G) +N0(r, 0;F ′) +N0(r, 0;G′)

+2N
(2

E (r, 1;F ) + S(r, f) + S(r, g).

Obviously

N
1)
E (r, 1;F ) + 2N

(2

E (r, 1;F ) +NL(r, 1;F ) + 2NL(r, 1;G)(2.10)

≤ N(r, 1;G) + S(r, f) + S(r, g)

≤ T (r,G) + S(r, f) + S(r, g)

≤ T (r, g) + kN(r,∞; g) + S(r, f) + S(r, g).
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Also by Lemma 3 we have

NL(r, 1;F ) ≤ N(r, 1;F )−N(r, 1;F )(2.11)

≤ N

(
r,∞;

F

F ′

)
≤ N

(
r,∞;

F ′

F

)
+ S(r, f)

≤ N(r, 0;F ) +N(r,∞; f) + S(r, f)

≤ Nk+1(r, 0; f) + (k + 1)N(r,∞; f) + S(r, f).

Similarly,

NL(r, 1;G) ≤ Nk+1(r, 0; g) + (k + 1)N(r,∞; g) + S(r, g).(2.12)

From (2.7) - (2.12), we obtain

T (r, f) ≤ (2k + 4)N(r,∞; f)+(2k + 3)N(r,∞; g)+N(r, 0; f)+N(r, 0; g)(2.13)

+3Nk+1(r, 0; f)+2Nk+1(r, 0; g)+S(r, f) + S(r, g).

Similarly,

T (r, g) ≤ (2k + 4)N(r,∞; g)+(2k + 3)N(r,∞; f)+N(r, 0; g)+N(r, 0; f)(2.14)

+3Nk+1(r, 0; g)+2Nk+1(r, 0; f)+S(r, f)+S(r, g).

Suppose that there exists a subset I ⊆ R+ satisfying mesI =∞ such that T (r, g) ≤
T (r, f), r ∈ I. Hence from (2.13) we have

∆1 = (2k + 4)Θ(∞, f) + (2k + 3)Θ(∞, g) + Θ(0, f) + Θ(0, g)

+3δk+1(0, f) + 2δk+1(0, g) ≤ 4k + 13,

contradicting (2.1). Similarly if there exists a subset I ⊆ R+ satisfying mesI =∞
such that T (r, f) ≤ T (r, g), r ∈ I, from (2.14) we can obtain

∆2 = (2k + 4)Θ(∞, g) + (2k + 3)Θ(∞, f) + Θ(0, g) + Θ(0, f)

+3δk+1(0, g) + 2δk+1(0, f) ≤ 4k + 13,

contradicting (2.2). We now assume that H = 0. That is(
F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G− 1

)
= 0.

Integrating both sides of the above equality twice we get

1

F − 1
=

A

G− 1
+B,(2.15)

where A(6= 0) and B are finite complex constants. We now discuss the following
three cases.



198 Pulak Sahoo

Case 1. Let B 6= 0 and A = B. If B = −1, we obtain from (2.15) FG = 1, i.e.,
f (k)g(k) = P 2. If B 6= −1, from (2.15) we get

1

F
=

BG

(1 +B)G− 1
and G =

−1

b(F − 1+B
B )

.

So by Lemma 2 we obtain

N

(
r,

1

1 +B
;G

)
≤ N(r, 0;F ) ≤ Nk+1(r, 0; f) + kN(r,∞; f)(2.16)

+O(log r) + S(r, f)

and

N

(
r,

1 +B

B
;F

)
≤ N(r,∞; g) +O(log r).(2.17)

Using Lemma 4, (2.16) and (2.17) we obtain

T (r, g) ≤ Nk+1(r, 0; g) +N

(
r,

1

1 +B
;G

)
+N(r,∞; g)(2.18)

−N0(r, 0;G′) + S(r, g)

≤ Nk+1(r, 0; g) +Nk+1(r, 0; f) + kN(r,∞; f)

+N(r,∞; g) + S(r, f) + S(r, g)

and

T (r, f) ≤ Nk+1(r, 0; f) +N

(
r,

1 +B

B
;F

)
+N(r,∞; f)(2.19)

−N0(r, 0;F ′) + S(r, f)

≤ Nk+1(r, 0; f) +N(r,∞; f) +N(r,∞; g) + S(r, f).

Suppose that there exists a subset I ⊆ R+ satisfying mesI =∞ such that T (r, f) ≤
T (r, g), r ∈ I. So from (2.18) we obtain

kΘ(∞, f) + Θ(∞, g) + δk+1(0, f) + δk+1(0, g) ≤ k + 2,

which by (2.1) gives

(k + 4)Θ(∞, f) + (2k + 2)Θ(∞, g) + Θ(0, f) + Θ(0, g)

+2δk+1(0, f) + δk+1(0, g) > 3k + 11,

a contradiction together with Remark 1. If there exists a subset I ⊆ R+ satisfying
mesI = ∞ such that T (r, g) ≤ T (r, f), r ∈ I, by the same argument we obtain a
contradiction from (2.1) and (2.19).
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Case 2. Let B 6= 0 and A 6= B. If B = −1, from (2.15) we obtain F = A
−(G−(a+1)) .

If B 6= −1, from (2.15) we obtain F − 1+B
B = −A

B2(G+A−B
B )

. Using the same argument

as in case 1 we obtain a contradiction in both the cases.

Case 3. Let B = 0. Then from (2.15) we get

(2.20) g = Af + (1−A)P1,

where P1 is a polynomial of degree γP1
≥ k. If A 6= 1, by Lemma 3 and (2.20) we

get

T (r, g) ≤ N(r, 0; g) +N(r,∞; g) +N(r, (1−A)P1; g) + S(r, g)(2.21)

≤ N(r, 0; g) +N(r,∞; g) +N(r, 0; f) + S(r, g).

Since f and g are transcendental meromorphic function, from (2.20) we have

T (r, f) = T (r, g) +O(log r).

So from (2.21), we obtain

Θ(0, f) + Θ(0, g) + Θ(∞, g) ≤ 2,

which gives by (2.1)

(2k + 4)Θ(∞, f) + (2k + 2)Θ(∞, g) + 3δk+1(0, f) + 2δk+1(0, g) > 4k + 11,

a contradiction together with Remark 1. Thus A = 1 and so f = g. This proves
the lemma. 2

Lemma 6. Let f and g be two nonconstant meromorphic functions such that

Θ(∞, f) + Θ(∞, g) >
4

n
,

where n(≥ 3) is an integer. Then

fn(af + b) ≡ gn(ag + b)

implies f ≡ g, where a, b are two nonzero constants.

Proof. We omit the proof since it can be carried out in the line of Lemma 6 [10]. 2

Lemma 7([11]). Let f and g be two transcendental meromorphic functions, let
n ≥ 2 be a positive integer, and let P be a nonconstant polynomial with its degree
γP ≤ n. If fnf ′gng′ = P 2, then f and g are expressed as f = c1e

cQ and g =
c2e
−cQ respectively, where c1, c2 and c are three nonzero complex numbers satisfying

(c1c2)n+1c2 = −1, Q is a polynomial satisfying Q =
∫ z

0
P (η)dη.
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Lemma 8. Let f and g be two transcendental meromorphic functions, let n, m be
two positive integers and let P be a nonconstant polynomial. If m = 1, n ≥ 6 or if
m ≥ 2, n ≥ m+ 3, then

(fn(f − 1)m)′(gn(g − 1)m)′ 6= P 2.

Proof. If possible, let

(fn(f − 1)m)′(gn(g − 1)m)′ = P 2.(2.22)

We discuss the following two cases.
Case 1. Let m ≥ 2. Then from (2.22) we obtain

fn−1(f − 1)m−1(cf − d)f ′gn−1(g − 1)m−1(cg − d)g′ = P 2,(2.23)

where c = n+m and d = n.
Let z0 6∈ {z : P (z) = 0} be a 1-point of f with multiplicity p0(≥ 1). Then from
(2.23) it follows that z0 is a pole of g. Suppose that z0 is a pole of g of order q0(≥ 1).
Then we have mp0 − 1 = (n + m)q0 + 1, i.e., mp0 = (n + m)q0 + 2 ≥ n + m + 2,
and so

p0 ≥
n+m+ 2

m
.

Let z1 6∈ {z : P (z) = 0} be a zero of cf − d with multiplicity p1(≥ 1). Then from
(2.23) it follows that z1 is a pole of g. Suppose that z1 is a pole of g of order q1(≥ 1).
Then we have 2p1 − 1 = (n+m)q1 + 1, and so

p1 ≥
n+m+ 2

2
.

Let z2 6∈ {z : P (z) = 0} be a zero of f with multiplicity p2(≥ 1). Then it follows
from (2.23) that z2 is a pole of g. Suppose that z2 is a pole of g of order q2(≥ 1).
Then we have

(2.24) np2 − 1 = (n+m)q2 + 1.

From (2.24) we get mq2 + 2 = n(p2 − q2) ≥ n, i.e., q2 ≥ n−2
m . Thus from (2.24) we

obtain np2 = (n+m)q2 + 2 ≥ (n+m)(n−2)
m + 2, and so

p2 ≥
n+m− 2

m
.

Let z3 6∈ {z : P (z) = 0} be a pole of f . Then it follows from (2.23) that z3 is a zero
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of g(g − 1)(cg − d) or a zero of g′. So we have

N(r,∞; f) ≤ N(r, 0; g) +N(r, 1; g) +N

(
r,
d

c
; g

)
+N0(r, 0; g′)

+S(r, f) + S(r, g)

≤
(

m+ 2

n+m+ 2
+

m

n+m− 2

)
T (r, g) +N0(r, 0; g′)

+S(r, f) + S(r, g),

where N0(r, 0; g′) denotes the reduced counting function of those zeros of g′ which
are not the zeros of g(g − 1)(cg − d).
By the second fundamental theorem of Nevanlinna we get

2T (r, f) ≤ N(r, 0; f) +N(r, 1; f) +N

(
r,
d

c
; f

)
+N(r,∞; f)(2.25)

−N0(r, 0; f ′) + S(r, f)

≤
(

m+ 2

n+m+ 2
+

m

n+m− 2

)
{T (r, f) + T (r, g)} −N0(r, 0; f ′)

+N0(r, 0; g′) + S(r, f) + S(r, g).

Similarly,

2T (r, g) ≤
(

m+ 2

n+m+ 2
+

m

n+m− 2

)
{T (r, f) + T (r, g)}+N0(r, 0; f ′)(2.26)

−N0(r, 0; g′) + S(r, f) + S(r, g).

Adding (2.25) and (2.26) we obtain(
1− m+ 2

n+m+ 2
− m

n+m− 2

)
{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

contradicting the fact that n ≥ m+ 3.
Case 2. Let m = 1. Then from (2.22) we obtain

fn−1(af − b)f ′gn−1(ag − b)g′ = P 2,(2.27)

where a = n+ 1 and b = n.
Let z4 6∈ {z : P (z) = 0} be a pole of f . Then it follows from (2.27) that z4 is a
zero of g(ag− b) or a zero of g′. Then proceeding in a manner similar to Case 1 we
obtain (

1− 2

n− 1
− 4

n+ 3

)
{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

which contradicts the fact that n ≥ 6. This proves the lemma. 2
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3. Proof of the Theorems

Proof of Theorem 1. We consider F1 = fn and G1 = gn. Then we see that F
(k)
1 −P

and G
(k)
1 − P share the value 0 IM. Using Lemma 1, we have

Θ(0, F1) = 1− lim sup
r→∞

N(r, 0;F1)

T (r, F1)
(3.1)

= 1− lim sup
r→∞

N(r, 0; f)

nT (r, f)

≥ 1− lim sup
r→∞

T (r, f)

nT (r, f)

=
n− 1

n
.

Similarly,

Θ(0, G1) ≥ n− 1

n
.(3.2)

Θ(∞, F1) = 1− lim sup
r→∞

N(r,∞;F1)

T (r, F1)
(3.3)

= 1− lim sup
r→∞

N(r,∞; f)

nT (r, f)

≥ 1− lim sup
r→∞

T (r, f)

nT (r, f)

=
n− 1

n
.

Similarly,

Θ(∞, G1) ≥ n− 1

n
.(3.4)

δk+1(0, F1) = 1− lim sup
r→∞

Nk+1(r, 0;F1)

T (r, F1)
(3.5)

= 1− lim sup
r→∞

Nk+1(r, 0; fn)

nT (r, f)

≥ 1− lim sup
r→∞

(k + 1)T (r, f)

nT (r, f)

=
n− k − 1

n
.
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Similarly,

δk+1(0, G1) ≥ n− k − 1

n
.(3.6)

Using (2.1), (2.2) and (3.1)-(3.6) we obtain

∆1 ≥ (4k + 14)− 9k + 14

n
and ∆2 ≥ (4k + 14)− 9k + 14

n
.

Since n ≥ 9k + 15, we get ∆1 > 4k + 13 and ∆2 > 4k + 13. So by Lemma 5 we

obtain either F
(k)
1 G

(k)
1 = P 2 or F1 = G1. Suppose that F

(k)
1 G

(k)
1 = P 2, i.e.,

(fn)(k)(gn)(k) = P 2.(3.7)

If k = 1, then from (3.7) we have fn−1f ′gn−1g′ = P 2/n2. Applying Lemma 7 we
obtain f = c1e

cQ and g = c2e
−cQ, where c1, c2 and c are three nonzero complex

numbers satisfying (c1c2)nc2 = −1, Q is a polynomial satisfying Q =
∫ z

0
P (η)dη.

If F1 = G1, then f = tg for a complex number t such that tn = 1. This
completes the proof of Theorem 1. 2

Proof of Theorem 2. Let F2 = fn(f − 1)m and G2 = gn(g − 1)m. Then F
(k)
2 − P

and G
(k)
2 − P share the value 0 IM. Using Lemma 1, we obtain

Θ(0, F2) = 1− lim sup
r→∞

N(r, 0;F2)

T (r, F2)
(3.8)

= 1− lim sup
r→∞

N(r, 0; fn(f − 1)m)

(n+m)T (r, f)

≥ 1− lim sup
r→∞

2T (r, f)

(n+m)T (r, f)

≥ n+m− 2

n+m
.

Similarly,

Θ(0, G2) ≥ n+m− 2

n+m
.(3.9)

Θ(∞, F2) = 1− lim sup
r→∞

N(r,∞;F2)

T (r, F2)
(3.10)

= 1− lim sup
r→∞

N(r,∞; f)

(n+m)T (r, f)

≥ 1− lim sup
r→∞

T (r, f)

(n+m)T (r, f)

≥ n+m− 1

n+m
.
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Similarly,

Θ(∞;G2) ≥ n+m− 1

n+m
.(3.11)

δk+1(0, F2) = 1− lim sup
r→∞

Nk+1(r, 0;F2)

T (r, F2)
(3.12)

= 1− lim sup
r→∞

Nk+1(r, 0; fn(f − 1)m)

(n+m)T (r, f)

≥ 1− lim sup
r→∞

(k +m+ 1)T (r, f)

(n+m)T (r, f)

≥ n− k − 1

n+m
.

Similarly,

δk+1(0, G2) ≥ n− k − 1

n+m
.(3.13)

Using (2.1), (2.2) and (3.8)-(3.13) we obtain

∆1 ≥ (4k + 9) +
5n− 9k − 16

n+m
and ∆2 ≥ (4k + 9) +

5n− 9k − 16

n+m
.

Since n ≥ 9k + 4m+ 17, we get ∆1 > 4k + 13 and ∆2 > 4k + 13. So by Lemma 5,

either F
(k)
2 G

(k)
2 = P 2 or F2 = G2 holds. Suppose that F

(k)
2 G

(k)
2 = P 2. Then

(fn(f − 1)m)(k)(gn(g − 1)m)(k) = P 2.(3.14)

Also by Lemma 8, (3.14) does not occur when k = 1.
Next we suppose that F2 = G2, i.e.,

(3.15) fn(f − 1)m = gn(g − 1)m.

Let m = 1. Then in view of Lemma 6 and (3.15) we obtain f = g.

Let m ≥ 2. Then from (3.15) we obtain

fn[fm + ...+ (−1)i mCif
m−i + ...+ (−1)m] = gn[gm(3.16)

+...+ (−1)i mCig
m−i + ...+ (−1)m].

Let h = f
g . If h is a constant, then substituting f = gh in (3.16) we obtain

gn+m(hn+m − 1) + ...+ (−1)i mCig
n+m−i(hn+m−i − 1)

+...+ (−1)mgn(hn − 1) = 0,

which implies h = 1. Hence f = g.
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If h is not a constant, then from (3.15) we can say that f and g satisfy the
algebraic equation R(f, g) = 0, where

R(x, y) = xn(x− 1)m − yn(y − 1)m.

This completes the proof of Theorem 2. 2
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