References
- J. Park, H. Kim, and H. Lim, "Many-to-Many Disjoint Path Covers in the Presence of Faulty Elements," IEEE Trans. Comput., Vol. 58, No 4, pp. 528-540, 2009. https://doi.org/10.1109/TC.2008.160
- Q. Zhu, J. Xu, and M. Xu, "Reliability of the Folded Hypercubes," Info. Sci., Vol. 177, No. 5, pp. 1782- 1788, 2007. https://doi.org/10.1016/j.ins.2006.11.003
-
J. Park, "Panconnectivity and Edge-Pancyclicity of Faulty Recursive Circulant G(
$2^m$ , 4)," Theoret. Comput. Sci., Vol. 390, No. 1, pp. 70-80, 2008. https://doi.org/10.1016/j.tcs.2007.10.016 - S. Tang, Y. Wang, and C. Yi, "Genneralized recursive circulant graphs," IEEE Trans. Parall. Distr. Syst., Vol. 23, No. 1, pp. 87-93, 2012. https://doi.org/10.1109/TPDS.2011.109
- I. Chung, "Application of the Special Latin Squares to the Parallel Routing Algorithm on Hypercube," J . of Korea Info. Sci. Soc., Vol. 19, No. 5, pp. 569-578, 1992.
- Y. Shih and S. Kao, "One-to-one Disjoint Path Covers on K-ary N-cubes," Theoret. Comput. Sci., Vol. 412, No. 1, pp. 4513-4530, 2011. https://doi.org/10.1016/j.tcs.2011.04.035
- K. Day and A. Tripathi, "A Comparative Study of Topological Properties of Hypercubes and Star Graphs," IEEE Trans. Parall. Distr. Syst., Vol. 5, No. 1, pp. 31-38, 1994. https://doi.org/10.1109/71.262586
- S. Gao, B. Novick, and K. Qiu, "From Hall' Matching Theorem to Optimal Routing on Hypercubes," J. Combinatorial Theory, Series B 74, pp. 291-301, 1998. https://doi.org/10.1006/jctb.1998.1850
- C. Lai, "Two Conditions for Reducing the Maximal Length of Node-Disjoint Paths in Hypercubes,"Theoret. Comput. Sci., Vol. 418, No. 1, pp. 82-91, 2012. https://doi.org/10.1016/j.tcs.2011.11.009
- C. Chen and J. Chen, "Nearly Optimal One-to- Many Parallel Routing in Star Networks," IEEE Trans. Parall. Distr. Syst., Vol. 8, No. 12, pp. 1196-1202, 1997. https://doi.org/10.1109/71.640011
- Q. Gu and S. Peng, "Cluster Fault-Tolerant Routing in Star Graph,"Networks, Vol. 35, No. 1, pp. 83-90, 2000. https://doi.org/10.1002/(SICI)1097-0037(200001)35:1<83::AID-NET7>3.0.CO;2-D
- S. Madhavapeddy and I. Sudborough, "A Topogical Property of Hypercubes: Node Disjoint Paths," IEEE Symp. Parall. Distr. Process., pp. 532- 539, 1997.
- H.S. Stone, Discrete Mathematical Structures and Their Applications, SRA, Chicago, IL., 1973.
- Y. Chen, S. Promparmote, and F. Maire, "MDSM: Microarray Database Schema Matching using the Hungarian Method," Info. Sci., Vol. 176, No. 19, pp. 2771-2790, 2006. https://doi.org/10.1016/j.ins.2005.11.015
- H. Kuhn, "The Hungarian Method for the Assignment Problem,"Naval Res. Logist. Quart., Vol. 2, No. 1-2, pp. 83-97, 1955. https://doi.org/10.1002/nav.3800020109
- T. Jeon and C. Kim, "A Real-time Embedded Task Scheduler Considering Falut-tolerant," J. of Korean Multimedia Society, Vol. 12, No. 7, pp. 940-948, 2011 https://doi.org/10.9717/kmms.2011.14.7.940
- J. Park and K. Chwa, "Recursive Circulants and Their Embedding Among Hypercubes," Theoret. Comput. Sci., Vol. 244, No. 1-2, pp. 35-62, 2000. https://doi.org/10.1016/S0304-3975(00)00176-6
Cited by
- Application of the Hamiltonian circuit Latin square to a Parallel Routing Algorithm on Generalized Recursive Circulant Networks vol.18, pp.9, 2015, https://doi.org/10.9717/kmms.2015.18.9.1083
- Node-Disjoint Shortest and Next-to-Shortest Paths in N-Dimensional Hypercube vol.07, pp.04, 2017, https://doi.org/10.12677/PM.2017.74029