Abstract
FCM (Fuzzy C-Means) clustering algorithm, a typical split-based clustering algorithm, has been successfully applied to the various fields. Nonetheless, the FCM clustering algorithm has some problems, such as high sensitivity to noise and local data, the different clustering result from the intuitive grasp, and the setting of initial round and the number of clusters. To address these problems, in this paper, we determine fuzzy numbers which project the FCM clustering result on the axis with the specific attribute. And we propose a model that the fuzzy numbers apply to FDT (Fuzzy Decision Tree). This model improves the two problems of FCM clustering algorithm such as elevated sensitivity to data, and the difference of the clustering result from the intuitional decision. And also, this paper compares the effect of the proposed model and the result of FCM clustering algorithm through the experiment using real traffic and rainfall data. The experimental results indicate that the proposed model provides more reliable results by the sensitivity relief for data. And we can see that it has improved on the concordance of FCM clustering result with the intuitive expectation.
FCM 클러스터링 알고리즘은 대표적인 분할기반 군집화 알고리즘이며 다양한 분야에서 성공적으로 적용되어 왔다. 그러나 FCM 클러스터링 알고리즘은 잡음 및 지역 데이터에 대한 높은 민감도, 직관적인 결과와 상이한 결과 도출 가능성이 높은 문제, 초기 원형과 클러스터 개수 설정 문제 등이 존재한다. 본 논문에서는 FCM 알고리즘의 결과를 해당 속성의 데이터 축에 사상하여 퍼지구간을 결정하고, 결정된 퍼지구간을 FDT에 적용함으로써 FCM 알고리즘이 가지는 문제 중 잡음 및 데이터에 대한 높은 민감도, 직관적인 결과와 상이한 결과 도출 가능성이 높은 문제를 개선하는 시스템을 제안한다. 또한 실제 교통데이터와 강수량 데이터를 이용한 실험을 통하여 제안 모델과 FCM 클러스터링 알고리즘을 비교한다. 실험 결과를 통해 제안 모델은 잡음 및 데이터에 대한 민감도를 완화시킴으로써 보다 안정적인 결과를 제공하며, FCM 클러스터링 알고리즘을 적용한 시스템보다 직관적인 결과와의 일치율을 높여줌을 알 수 있다.