010100

버팀대 유효선행하중(Effective Pre-Loading on Braced Wall) 공법

김 일 _ 원오 건설공법연구소 소장 이상덕 _ 아주대학교 건설시스템공학과 교수

1. 버팀대 유효선행하중(EPL)공법의 개요

도심지에서 근접굴착에 의해 발생되는 흙막이벽체의 수평변위는 배면지반을 느슨하게 하여 주변구조물 특히, 터널의 안정성을 더 많이 감소시킨다. 따라서 굴착시 주 변구조물의 안정성을 증가시키기 위해서는 흙막이벽체의 수평변위를 충분히 억제하는 것이 매우 중요하다.

선행하중 전달체를 사용하는 버팀대 유효선행하중 (EPL)공법은 굴착단계별로 기존의 버팀대선행하중보다 훨씬 큰 유효선행하중(250t 이하)을 가하여 흙막이벽체와 주변구조물(지하철 터널과 Box, 통신터널, 지하매설물, 주변건물 등)의 안정성을 증가시킬 수 있도록 개량된 버팀대 선행하중공법이다. 굴착단계별로 유효선행하중을 가하여 굴착시 발생된 흙막이벽체의 수평변위를 억제시키면 흙막이벽체의 부재력이 감소되고, 배면지반의 변형이 억제되어 흙막이벽체와 주변구조물의 안정성이 증가된다. 흙막이벽체의 부재력이 감소되면 버팀대의 수직간격을 넓게(3.5~4.5m) 설치할 수 있어서 버팀대 설치단수가 감소되므로 공사비와 공사기간이 감소된다.

2. 버팀대 유효선행하중(EPL)공법의 핵심

- 선행하중 전달체: 버팀대 유효선행하중을 집중하중 형태에서 분포형태로 변경시킨다.
- 흙막이벽체와 주변구조물의 안정성 증가 : 흙막이벽 체의 부재력과 배면침하가 감소된다.
- 공사비와 공사기간 감소: 버팀대의 설치간격이 넓어지므로 버팀대 단수가 감소된다.

3. 버팀대 유효선행하중(EPL)공법의 특징

(1) 안전성 증가

- 주변구조물: 배면지반의 변형이 억제되므로 침하가 감소된다.
- 흙막이벽체: 유효선행하중이 토압과 반대방향으로 작용하므로 모멘트가 감소되고, 흙막이벽체에 전달 되는 선행하중이 감소되므로 전단력이 감소된다.
- 버팀대 설치단수가 감소되더라도 유효선행하증을 가하여 흙막이벽체의 부재력을 감소시키고, 배면지 반의 변형을 억제시키므로 흙막이벽체와 주변구조 물의 안정성이 증가된다.

(2) 시공성 증가

- 버팀대의 수직간격을 넓게(3.5~4.5m) 설치하면 버 팀대 단수가 감소되므로 강재작업량이 감소되고, 과 굴착 하지 않아도 굴착작업공간이 넓어진다.
- 버팀대를 지하슬래브(h=3.5~4.0m)상부 1.2~1.5m
 위치에 설치하면 해체시 구조물의 벽체중간을 끊지
 않고 벽체와 슬래브와 한 번에 시공할 수 있어 양질
 시공을 할 수 있다.

(3) 경제성 증가

- 버팀대 단수가 감소되므로 공사비와 공사기간이 감 소된다
- 흙막이벽체의 수평변위 억제로 배면지반의 침하가 감소하면 주변구조물의 안정성이 증가되므로 주변 구조물 보호와 민원예방에 큰 효과가 있다.
- 굴착완료 후 버팀대 해체 시 벽체 중간을 끊어서 시 공하거나 강재보강 작업이 거의 필요 없으므로 공사 비와 공사기간이 감소된다.

4. 기존 버팀대 선행하중공법의 문제

- 작은 선행하중을 가하면 흙막이벽체의 굴착단계별로 누적되는 누적 수평변위와 버팀대 해체시 추가되는 수평변위가 예상보다 크게 발생하여 배면지반이 느슨해지므로 흙막이벽체와 주변구조물의 안정성을 크게 증가시키기 어렵다.(대형모형실험과 수치해석결과)
- 지반 굴착시 흙막이벽체와 주변구조물의 안정성을 충분히 증가시키기 위해서 큰 선행하중을 가하면 버 팀대가 연결된 띠장 부분에 변형이 발생되면서 선행 하중이 집중되므로 흙막이벽체에 국부적인 변형이 발생되어 흙막이벽체와 주변구조물이 위험해질 수 있다.

5. 대형모형실험

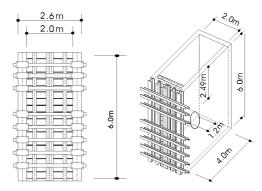
(1) 용어 설명

Full선행하중: 지반굴착시 발생되는 흙막이벽체의 수

평변위를 "0"(영)이나 거의 "0"(영)이 되도록 가하는 버팀대 선행하중 값(정

지상태)

유효선행하중 : Full 선행하중×(70~80%)으로 250ton


이하임

설계축력 : 일반 버팀대공법에서 굴착 완료시에 버팀

대에 작용하는 축력.

대형실험과 수치해석결과, 설계축력 100%

= Full선행하중×(40~50%) 범위

(a) 대형토조 개략도

(b) 대형토조 사진

그림 1. 대형모형실험(아주대학교 지반공학연구실) 수행

신기술 신공법

(2) 유효선행하중 결정

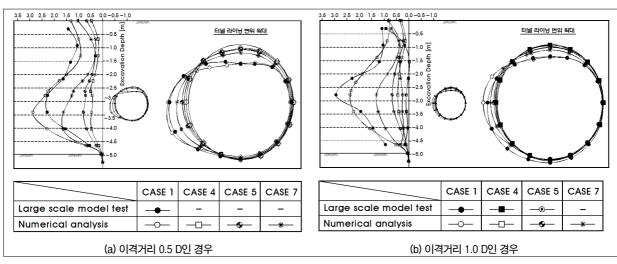
유효선행하중의 범위는 대형모형실험과 동일한 조건으로 수치해석하여 선행하중 크기(Full 선행하중에서 10%씩 감소)에 따른 최종결과를 구하여 구조물의 허용범위 내에서 결정하였다.

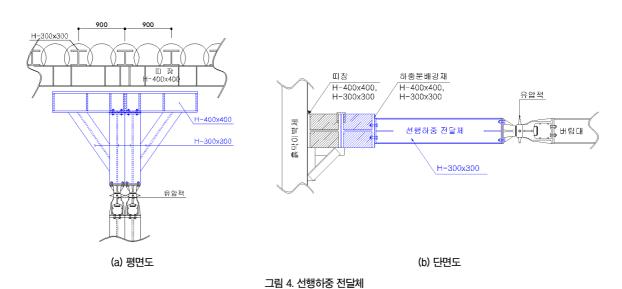
표 1. 대형모형시험 결과

		터널이		터널이 벽체 배면에 터널이 있는 경우(직경=D), 토피=2D이상										
		없는	경우	이격거리	리 0.5D				상재하중작용					
		CA	SE	CASE					CA	SE				
		1	2	1	2	1	2	3	4	5	6	1	2	
÷ III ol	수평변위(mm)	2.88	0.16	2.29	0.03	2.94	0.10	0.64	0.68	0.71	0.84	5.62	0.08	
흙막이 벽체	모멘트(kN·m/m)	1.91	-1.4	0.68	-1.06	1.86	0.92	1.21	0.77	0.71	-0.99	-6.70	-4.39	
	전단력(kN/m)	19.1	14.0	6.78	-6.63	19.65	-6.52	7.55	7.65	7.13	-8.0	66.24	-32.3	
	내공변위(mm)	_	_	2.10	0.21	1.22	0.19	0.07	0.05	0.21	0.43	4.80	0.92	
터널	모멘트(kN·m/m)	_	_	-0.39	-0.02	0.04	-0.07	-0.01	-0.02	-0.01	0.05	0.09	0.02	
Ì	전단력(kN/m)	_	_	-0.33	-0.18	0.37	-0.59	-0.12	-0.20	-0.12	0.38	0.76	0.12	
 지표침하(mm)		1.91	0.33	2.10	0.12	1.55	0.06	0.46	0.56	0.62	1.00	_	-	

표 2. 대형모형실험에 적용된 버팀대 선행히중

선행하중 종류	선행하중 크기	선행하중 종류	선행하중 크기
CASE 1	선행하중 없는 경우	CASE 4	Full 선행하중 x 80%
CASE 2	Full 선행하중	CASE 5	Full 선행하중 x 70%
CASE 3	Full 선행하중 x 90%	CASE 6	Full 선행하중 x 60%




그림 2. 흙막이벽체의 수평변위와 터널라이닝의 내공변위 관계

(3) 선행하중 전달율실험

흙막이벽체에 전달되는 버팀대 선행하중을 확인하기 위해서 전달율실험을 수행하였으며, 띠장 홈메우기 철판은 현장과 동일하게 설치하였다.

그림 3. 선행하중 전달율실험

6. 버팀대 유효선행이중(EPL)공법과 기존선행이중공법 비교

표 3. EPL공법과 기존선행하중공법 비교

	EPL공법	기존 버팀대선행하중공법	비 고		
선행하중 크기	각 단별로 250 ton 이하	100ton이하(평균 50ton정도)	선행하중 대폭 증가		
띠장과 흙막이	유효선행하중(250ton이하)에 의한 구조적	큰 선행하중 적용 시	특허부분		
벽체 연결부	문제 보완	구조적(전단파괴)문제발생	(선행하중전달체 개발)		
적용 흙막이벽체	모든 흙막이공법에 적용	동일			
버팀대의	수직 : 평균 h=3.5~4.5m	수직 : 평균 h=2.5~3.5m	슬래브의 평균 간격		
수직, 수평 간격	수평 : 5.0~6.0m	수평 : 4.0~6.0m	약 3.5~4.0m		
버팀대 단수	굴착심도에 비례하여 버팀대 설치단수 감소	일반 버팀대공법과 거의 동일	GL - 27.8m 굴착시 버팀대 3단 감소		
굴착시 장점	버팀대 수직설치 간격이 넓어 굴착작업 공간 확보에 유리, 대형굴착장비 사용 가능	일반 버팀대공법과 동일하므로 과굴착에 의한 안정성 감소	과굴착 방지		
해체시 장점	버팀대 수직설치 간격이 넓어 벽체와 슬래브를 한 번에 시공	부분적으로 구조물벽체 중간을 끊어 시공	구조물 양질시공 및 공사비와 공사기간 감소		
강재량 감소	버팀대 단수 감소만큼 감소	일반 버팀대공법과 동일	강재, 보강강재 등 감소		
안정성 증가	버팀대 단수를 줄여도 기존 선행하중공법보다 안정성증가	일반 버팀대공법보다 약간 증가	수평변위와 배면침하 대폭 감소		
공사비, 공사기간	버팀대 단수 감소만큼 감소	일반 버팀대공법과 동일	공사비, 공사기간 감소		
건설공해	진동, 소음, 분진 등 감소	일반 버팀대공법과 동일	민원 예방효과 증가		
VE 효과	공사비, 공사기간, 안정성 확보	일반 버팀대공법에 비해서 안정성 약간 증가	매우 크다.		
시공성	선행하중 전달체 설치 이외는 기존 버팀대선행하중공법과 거의 동일	일반 버팀대공법과 거의 동일	버팀대 간격이 넓어 대형굴착장비 사용 가능 과굴착 예방		

7. 기시설 평면도와 단면도

EPL공법으로 설계된 현장을 일반버팀대공법과 기존 버팀대선행하중공법으로 설계하여 비교

(1) 평면도와 단면도

1) EPL공법 평면도 : 띠장 전면에 선행하중 전달체를 부착시켜 강성증가(평면도 원 참조)

2) 기존 버팀대공법 평면도 : 버팀대를 띠장에 직접설치하고 경사보(화타)설치

표 4. 각 흙막이벽체공법과 버팀대 설치단수

	벽체 제원 및 버팀대 설치 단수										
벽체의 종류	일반 버팀대공법		기존 버팀대 선행하중 공 설계축력의 50%, 100% 기		버팀대 유효선행하중(EPL)공법 유효선행하중 기압						
	흙막이벽체	단수	흙막이벽체	단수	흙막이벽체	단수					
C.I.P(D450)	H-300×300×10×15 (C.T.C 1.8m)	11단	H-300×300×10×15 (C.T.C 1.8m)	11단	H-300×300×10×15 (C.T.C 1.8m)	8단					
S.C.W(D550)	H-300×300×10×15 (C.T.C 0.9m)	11단	H-300×300×10×15 (C.T.C 0.9m)	11단	H-300×300×10×15 (C.T.C 0.9m)	8단					
D/Wall	벽체 두께 t=800	8단	벽체 두께 t=800	8단	벽체 두께 t=800	8단					

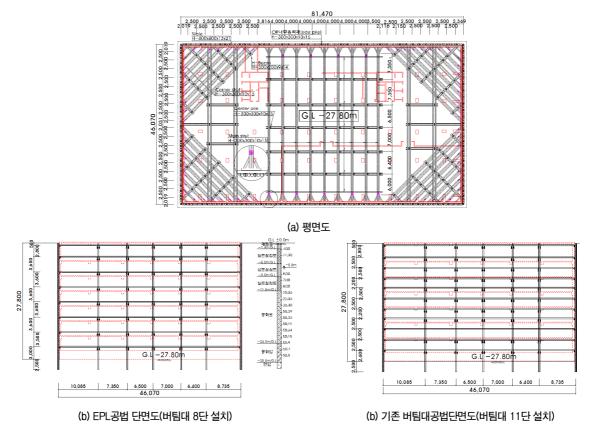
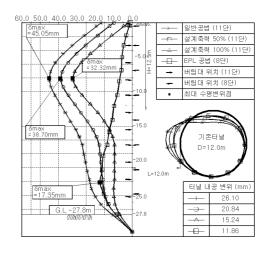
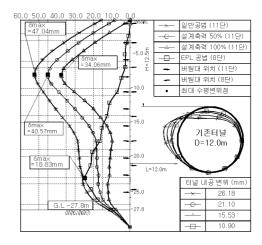
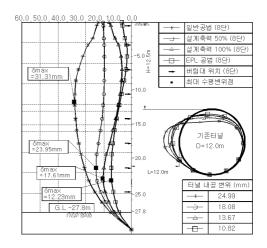



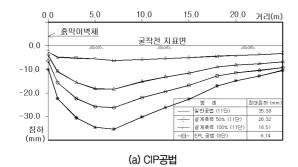
그림 5. 가시설 평면도와 단면도

(2) 각 흙막이 공법의 변위와 부재력 비교 ① C.I.P 공법


	변위 및 부재력		단위	일반 공법	설계하중 50%	설계축력 100%	EPL 공법
	수평	굴착	mm	45.05	38.70	32.32	17.35
흙 막	변위	해체	mm	48.67	41.71	34.77	20.24
막 이	모멘트	굴착	t·m/m	24.24	19.66	24.03	19.64
벽	_ 포렌드	해체	t-111/111	26.86	27.24	27.64	25.41
체	체전단력	굴착	t/m	30.97	29.07	30.84	39.11
		해체	L/111	37.88	37.77	40.17	40.35
	내공	굴착	mm	21.30	15.84	10.23	9.04
	변위	해체	mm	26.10	20.84	15.24	11.86
터	모멘트	굴착	+ m/m	7.39	6.85	6.07	5.85
널	보벤트	해체	t·m/m	7.96	7.44	6.84	6.29
_	전단력	굴착	t/m	3.46	3.22	2.89	2.60
	신민덕	해체	L/111	3.77	3.50	3.26	2.78
지표침하		mm	35.38	26.32	18.51	6.14	

신기술 신공법


② S.C.W 공법


	변위 및 부재력		단위	일반 공법	설계하중 50%	설계축력 100%	EPL 공법
	수평	굴착		47.04	40.57	34.06	18.83
흜	수평 변위	해체	mm	50.82	43.68	36.54	21.62
흙 막 이 벽 체	모멘트	굴착	t·m/m	24.02	18.27	22.51	20.20
별	<u> </u> 포렌드	해체	(-111/111	25.37	24.10	22.92	26.07
체	전단력	굴착	t/m	30.58	28.73	30.34	39.78
		해체	L/111	37.22	36.89	38.65	41.47
	내공 변위	굴착		20.88	15.70	10.07	7.53
		해체	mm	26.18	21.10	15.53	10.90
터	모멘트	굴착	+ /	7.41	6.87	6.06	5.67
널	포벤트	해체	t·m/m	8.05	7.52	6.91	6.22
_	전단력	굴착	+/m	3.54	3.30	2.91	2.56
	선권력	해체	t/m	3.88	3.63	3.34	2.79
	지표침하		mm	39.60	29.62	21.10	7.26

③ 지하연속벽(D/Wall) 공법

	변위 및 부재력		단위	일반 공법	설계하중 50%	설계축력 100%	EPL 공법
	수평	굴착		31.31	23.95	17.67	12.23
하막 이 변 체	변위	해체	mm	34.34	26.22	19.80	15.31
	모멘트	굴착	+ /	52.20	40.03	35.59	33.02
	포벤트	해체	t·m/m	69.21	56.03	50.37	51.97
	전단력	굴착	t/m	43.38	45.11	40.26	37.81
		해체	L/111	49.65	53.49	50.96	47.90
	내공 변위	굴착	mm	22.57	15.52	11.19	9.05
		해체	mm	24.99	18.08	13.67	10.82
터	모멘트	굴착	t·m/m	7.51	6.80	6.19	5.83
널	<u> </u> 포렌드	해체	t·111/1111	7.78	7.12	6.57	6.07
_	전단력	굴착	t/m	4.06	3.04	2.84	2.59
	선근국	해체	L/111	4.54	3.20	2.94	2.67
지표침하			mm	27.74	13.34	6.90	4.66

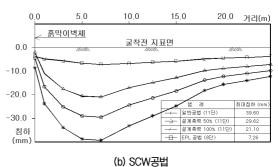


그림 6. 배면지반 침하

표 5. EPL공법 적용	IOTH II	비제려	되고치하이	가,요/0/\
표 3. EPL중립 직공	시 번위	구새덕.	시표심이의	台公室(%)

	변위, 부재력, 기표침하		각 흙막이벽체											
		C.I.P				S.C.W				D/Wall				
		일반	50 %	100 %	EPL %	일반	50 %	100 %	EPL %	일반	50 %	100 %	EPL %	
= = = = =	수평변위	0	-17.7	-40.0	-140	0	-16.3	-43	-135	0	-31	-73.4	-124	
흙막이 벽체	모멘트	0	1.4	2.8	-5.7	0	-5.3	-10.7	2.7	0	-23.5	-37.4	-33.0	
7/11	전단력	0	0	5.7	6.1	0	-0.9	3.7	10.2	0	7.2	2.6	-3.7	
	내공변위	0	-25.2	-71.3	-120	0	-24.0	-68.6	-140	0	-38.8	-82.8	-130	
터널	모멘트	0	-7.0	-16.4	-26.6	0	-7	-16.5	-29.4	0	-9.3	-18.4	-28.2	
	전단력	0	-7.7	-15.6	-35.6	0	-6.9	-16.2	-39.0	0	-41.9	-54.4	-70.0	
지표침하		0	-34.4	-91.1	-476	0	-33.7	-87.7	-454	0	-108	-302	-495	

8. 설계 순서

- (1) 현장조사(주변구조물 및 주변 굴착현장) 및 현황측 량 및 지반조사
- (2) 지반조건과 주변현황을 고려한 흙막이벽체공법 결 정 및 토질정수 산정
- (3) 지하층 Slab 위치를 고려하여 버틲대 설치 위치 결정
- (4) Program을 수행하여 Full 선행하중(정지(Ko)상

 대) 결정
- (5) 유효선행하중 결정(Full 선행하중의 70~80%)
- (6) Program 수행을 반복 해석하여 시공에 적용할 최 적 유효선행하중 결정 최적 유효선행하중은 Full 선행하중의 70~80% 범위 내에서 결정
- (7) 안정성 검토서(흙막이벽체 및 주변구조물) 작성
- (8) 도면 및 시방서(계측기 설치도면 포함) 작성

9. 시공 순서(지하 5층, 버팀대 6단 가정)

- (1) 흙막이벽체 시공 후 중앙말뚝(Center Pile) 시공
- (2) 1단 굴착 후 띠장(Wale) 설치
- (3) 1단 선행하중 전달체를 설치한 후에 버팀대(Strut) 설치하고 최적 유효선행하중 가압
- (4) 2단부터 굴착부터 6단 버팀대 설치완료까지 반복
- (5) 굴착 완료 후 매트기초(Mat Foundation) 타설
- (6) 6단 버팀대 유효선행하중 제거 후 해체
- (7) 지하 5층 벽체와 지하 4층 Slab 콘크리트 타설 후 양생
- (8) 6), 7) 과정 반복
- (9) 1층 바닥 Slab 콘크리트 타설(지하공사완료)

1O. 버팀대 유효선행이중(EPL)공법의 굴착 및 해체순서

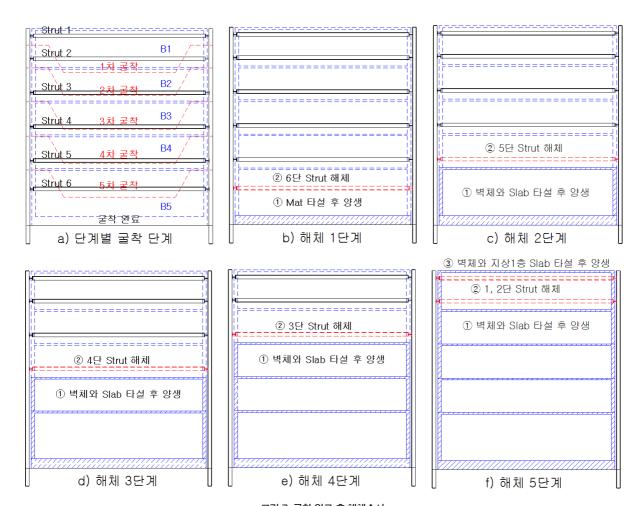


그림 7. 굴착 완료 후 해체순서