DOI QR코드

DOI QR Code

Anti-obesity effects of hot water extract from Wasabi (Wasabia japonica Matsum.) leaves in mice fed high-fat diets

  • Yamasaki, Masayuki (Department of Environmental and Preventive Medicine, Shimane University School of Medicine) ;
  • Ogawa, Tetsuro (Shimane Institute for Industrial Technology) ;
  • Wang, Li (Department of Environmental and Preventive Medicine, Shimane University School of Medicine) ;
  • Katsube, Takuya (Shimane Institute for Industrial Technology) ;
  • Yamasaki, Yukikazu (Shimane Institute for Industrial Technology) ;
  • Sun, Xufeng (Department of Environmental and Preventive Medicine, Shimane University School of Medicine) ;
  • Shiwaku, Kuninori (Department of Environmental and Preventive Medicine, Shimane University School of Medicine)
  • Received : 2013.01.04
  • Accepted : 2013.03.29
  • Published : 2013.08.01

Abstract

The anti-obesity effects of a hot water extract from wasabi (Wasabia japonica Matsum.) leaves (WLE), without its specific pungent constituents, such as allyl-isothiocyanate, were investigated in high fat-diet induced mice. C57J/BL mice were fed a high-fat diet (control group) or a high-fat diet supplemented with 5% WLE (WLE group). Physical parameters and blood profiles were determined. Gene expression associated with lipid metabolism in liver and white adipose tissue were analyzed. After 120 days of feeding, significantly lower body weight gain, liver weight and epididymal white adipose tissue weight was observed in the WLE group compared to the control group. In liver gene expression within the WLE group, PPAR${\alpha}$ was significantly enhanced and SREBP-1c was significantly suppressed. Subsequent downstream genes controlled by these regulators were significantly suppressed. In epididymal white adipose tissue of the WLE group, expression of leptin, PPAR${\gamma}$, and C/EBP${\alpha}$ were significantly suppressed and adiponectin was significantly enhanced. Acox, related to fatty acid oxidization in adipocytes, was also enhanced. Our results demonstrate that the WLE dietary supplement induces mild suppression of obesity in a high-fat diet induced mice, possibly due to suppression of lipid accumulation in liver and white adipose tissue.

Keywords

References

  1. Kopelman PG. Obesity as a medical problem. Nature 2000;404: 635-43. https://doi.org/10.1038/35007508
  2. Goran MI, Ball GD, Cruz ML. Obesity and risk of type 2 diabetes and cardiovascular disease in children and adolescents. J Clin Endocrinol Metab 2003;88:1417-27. https://doi.org/10.1210/jc.2002-021442
  3. Furuyashiki T, Nagayasu H, Aoki Y, Bessho H, Hashimoto T, Kanazawa K, Ashida H. Tea catechin suppresses adipocyte differentiation accompanied by down-regulation of PPARgamma2 and C/EBPalpha in 3T3-L1 cells. Biosci Biotechnol Biochem 2004; 68:2353-9. https://doi.org/10.1271/bbb.68.2353
  4. Sayama K, Lin S, Zheng G, Oguni I. Effects of green tea on growth, food utilization and lipid metabolism in mice. In Vivo 2000;14:481-4.
  5. Zhang YT, Wang Y, Zhang XT, Wu DL, Zhang XQ, Ye WC. A new decalin derivative from red yeast rice. J Asian Nat Prod Res 2009;11:792-5. https://doi.org/10.1080/10286020903164269
  6. Iwashita K, Kobori M, Yamaki K, Tsushida T. Flavonoids inhibit cell growth and induce apoptosis in B16 melanoma 4A5 cells. Biosci Biotechnol Biochem 2000;64:1813-20. https://doi.org/10.1271/bbb.64.1813
  7. Harmon AW, Harp JB. Differential effects of flavonoids on 3T3-L1 adipogenesis and lipolysis. Am J Physiol Cell Physiol 2001;280:C807-13.
  8. Nakai R, Masui H, Horio H, Ohtsuru M. Effect of maitake (Grifola frondosa) water extract on inhibition of adipocyte conversion of C3H10T1/2B2C1 cells. J Nutr Sci Vitaminol (Tokyo) 1999;45: 385-9. https://doi.org/10.3177/jnsv.45.385
  9. Isshiki K, Tokuoka K, Mori R, Chiba S. Preliminary examination of allyl isothiocyanate vapor for food preservation. Biosci Biotechnol Biochem 1992;56:1476-7. https://doi.org/10.1271/bbb.56.1476
  10. Fukuchi Y, Kato Y, Okunishi I, Matsutani Y, Osawa T, Naito M. 6-Methylsulfinylhexyl isothiocyanate, an antioxidant derived from Wasabia japonica MATUM, ameliorates diabetic nephropathy in type 2 diabetic mice. Food Sci Technol Res 2004;10: 290-5. https://doi.org/10.3136/fstr.10.290
  11. Fuke Y, Haga Y, Ono H, Nomura T, Ryoyama K. Anti-carcinogenic activity of 6-methylsulfinylhexyl isothiocyanate-, an active anti-proliferative principal of wasabi (Eutrema wasabi Maxim.). Cytotechnology 1997;25:197-203. https://doi.org/10.1023/A:1007918508115
  12. Mochida K, Ogawa T. Anti-influenza virus activity of extract of Japanese wasabi leaves discarded in summer. J Sci Food Agric 2008;88:1704-8. https://doi.org/10.1002/jsfa.3268
  13. Ogawa T, Tabata H, Katsube T, Ohta Y, Yamasaki Y, Yamasaki M, Shiwaku K. Suppressive effect of hot water extract of wasabi (Wasabia japonica Matsum.) leaves on the differentiation of 3T3-L1 preadipocytes. Food Chem 2010;118:239-44. https://doi.org/10.1016/j.foodchem.2009.04.113
  14. Wang L, Yamasaki M, Katsube T, Sun X, Yamasaki Y, Shiwaku K. Antiobesity effect of polyphenolic compounds from molokheiya (Corchorus olitorius L.) leaves in LDL receptor-deficient mice. Eur J Nutr 2011;50:127-33. https://doi.org/10.1007/s00394-010-0122-y
  15. Tachibana H. Green tea polyphenol sensing. Proc Jpn Acad Ser B Phys Biol Sci 2011;87:66-80. https://doi.org/10.2183/pjab.87.66
  16. Knekt P, Kumpulainen J, Jarvinen R, Rissanen H, Heliövaara M, Reunanen A, Hakulinen T, Aromaa A. Flavonoid intake and risk of chronic diseases. Am J Clin Nutr 2002;76:560-8.
  17. Williamson G, Carughi A. Polyphenol content and health benefits of raisins. Nutr Res 2010;30:511-9. https://doi.org/10.1016/j.nutres.2010.07.005
  18. Quideau S, Deffieux D, Douat-Casassus C, Pouysegu L. Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Ed Engl 2011;50:586-621. https://doi.org/10.1002/anie.201000044
  19. Morise A, Thomas C, Landrier JF, Besnard P, Hermier D. Hepatic lipid metabolism response to dietary fatty acids is differently modulated by PPARalpha in male and female mice. Eur J Nutr 2009;48:465-73. https://doi.org/10.1007/s00394-009-0037-7
  20. Schadinger SE, Bucher NL, Schreiber BM, Farmer SR. PPAR gamma2 regulates lipogenesis and lipid accumulation in steatotic hepatocytes. Am J Physiol Endocrinol Metab 2005;288:E1195-205. https://doi.org/10.1152/ajpendo.00513.2004
  21. Motomura W, Inoue M, Ohtake T, Takahashi N, Nagamine M, Tanno S, Kohgo Y, Okumura T. Up-regulation of ADRP in fatty liver in human and liver steatosis in mice fed with high fat diet. Biochem Biophys Res Commun 2006;340:1111-8. https://doi.org/10.1016/j.bbrc.2005.12.121
  22. Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM. Increased adipose tissue expression of tumor necrosis factoralpha in human obesity and insulin resistance. J Clin Invest 1995; 95:2409-15. https://doi.org/10.1172/JCI117936
  23. Shimoda H, Tanaka J, Kikuchi M, Fukuda T, Ito H, Hatano T, Yoshida T. Effect of polyphenol-rich extract from walnut on diet-induced hypertriglyceridemia in mice via enhancement of fatty acid oxidation in the liver. J Agric Food Chem 2009;57: 1786-92. https://doi.org/10.1021/jf803441c
  24. Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, Hotta K, Nishida M, Takahashi M, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation 2000;102:1296-301. https://doi.org/10.1161/01.CIR.102.11.1296
  25. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K, Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara K, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 1999;257:79-83. https://doi.org/10.1006/bbrc.1999.0255
  26. Okamoto Y, Arita Y, Nishida M, Muraguchi M, Ouchi N, Takahashi M, Igura T, Inui Y, Kihara S, Nakamura T, Yamashita S, Miyagawa J, Funahashi T, Matsuzawa Y. An adipocytederived plasma protein, adiponectin, adheres to injured vascular walls. Horm Metab Res 2000;32:47-50. https://doi.org/10.1055/s-2007-978586
  27. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB, Kadowaki T. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 2002;8:1288-95. https://doi.org/10.1038/nm788
  28. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 2001;7:941-6. https://doi.org/10.1038/90984
  29. Uno K, Katagiri H, Yamada T, Ishigaki Y, Ogihara T, Imai J, Hasegawa Y, Gao J, Kaneko K, Iwasaki H, Ishihara H, Sasano H, Inukai K, Mizuguchi H, Asano T, Shiota M, Nakazato M, Oka Y. Neuronal pathway from the liver modulates energy expenditure and systemic insulin sensitivity. Science 2006;312:1656-9. https://doi.org/10.1126/science.1126010
  30. Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, Fei H, Kim S, Lallone R, Ranganathan S, Kern PA, Friedman JM. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1995;1:1155-61. https://doi.org/10.1038/nm1195-1155
  31. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK, Friedman JM. Weightreducing effects of the plasma protein encoded by the obese gene. Science 1995;269:543-6. https://doi.org/10.1126/science.7624777
  32. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL, Caro JF. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 1996;334:292-5. https://doi.org/10.1056/NEJM199602013340503

Cited by

  1. Plant natural products as an anti-lipid droplets accumulation agent vol.68, pp.2, 2014, https://doi.org/10.1007/s11418-014-0822-3
  2. Arctiin inhibits adipogenesis in 3T3-L1 cells and decreases adiposity and body weight in mice fed a high-fat diet vol.8, pp.6, 2014, https://doi.org/10.4162/nrp.2014.8.6.655
  3. Pharmacokinetics, Tissue Distribution, and Anti-Lipogenic/Adipogenic Effects of Allyl-Isothiocyanate Metabolites vol.10, pp.8, 2015, https://doi.org/10.1371/journal.pone.0132151
  4. DNA Microarray Highlights Nrf2-Mediated Neuron Protection Targeted by Wasabi-Derived Isothiocyanates in IMR-32 Cells vol.10, pp.1177-6250, 2016, https://doi.org/10.4137/GRSB.S39440
  5. Anti-obesity Effects of Wasabi Leaf Extract on Rats Fed a High-fat Diet are Related to Upregulation of mRNA Expression of β3-adrenergic Receptors in Interscapular Brown Adipose Tissue vol.22, pp.5, 2016, https://doi.org/10.3136/fstr.22.665
  6. Germinated waxy black rice extract inhibits lipid accumulation with regulation of multiple gene expression in 3T3-L1 adipocytes vol.25, pp.3, 2016, https://doi.org/10.1007/s10068-016-0137-0
  7. Neuroprotective and Anti-Inflammatory Activities of Allyl Isothiocyanate through Attenuation of JNK/NF-κB/TNF-α Signaling vol.18, pp.7, 2017, https://doi.org/10.3390/ijms18071423
  8. DNA Microarray Profiling Highlights Nrf2-Mediated Chemoprevention Targeted by Wasabi-Derived Isothiocyanates in HepG2 Cells vol.69, pp.1, 2017, https://doi.org/10.1080/01635581.2017.1248296
  9. 5-Hydroxyferulic acid methyl ester isolated from wasabi leaves inhibits 3T3-L1 adipocyte differentiation vol.32, pp.7, 2018, https://doi.org/10.1002/ptr.6060
  10. Natural Products with Anti-obesity Effects and Different Mechanisms of Action vol.64, pp.51, 2013, https://doi.org/10.1021/acs.jafc.6b04468
  11. 6-(Methylsulfonyl) hexyl isothiocyanate as potential chemopreventive agent: molecular and cellular profile in leukaemia cell lines vol.8, pp.67, 2013, https://doi.org/10.18632/oncotarget.22902
  12. Assessment of mutagenicity, acute and sub-acute toxicity and human trial safety of wasabi leaf extract powder vol.27, pp.1, 2013, https://doi.org/10.3136/fstr.27.131
  13. The influence of wasabi on the gut microbiota of high-carbohydrate, high-fat diet-induced hypertensive Wistar rats vol.35, pp.2, 2013, https://doi.org/10.1038/s41371-020-0359-8
  14. Flavonoid and Phenolic Acids Content and In Vitro Study of the Potential Anti-Aging Properties of Eutrema japonicum (Miq.) Koidz Cultivated in Wasabi Farm Poland vol.22, pp.12, 2013, https://doi.org/10.3390/ijms22126219
  15. A Review on Obesity Management through Natural Compounds and a Green Nanomedicine-Based Approach vol.26, pp.11, 2013, https://doi.org/10.3390/molecules26113278