DOI QR코드

DOI QR Code

A Repair-Time Limit Replacement Model with Imperfect Repair

불완전 수리에서의 수리시간한계를 가진 교체모형

  • Chung, Il Han (Changwon Center, Defense Agency for Technology and Quality) ;
  • Yun, Won Young (Department of Industrial Engineering, Pusan National University)
  • Received : 2012.09.18
  • Accepted : 2013.03.19
  • Published : 2013.08.15

Abstract

This article concerns a profit model in a repair limit replacement problem with imperfect repair. If a system fails, we should decide whether we repair the failed system (repair option) or replace it by new one (replacement option with a lead time). We assume that repair times are random variables and can be estimated before repair with estimation error. If the estimated repair time is less than the specified limit (repair time limit), the failed unit is repaired but the unit after repair is different from the new one (imperfect repair). Otherwise, we order a new unit to replace the failed unit. The long run average profit (expected profit rate) is used as an optimization criterion and the optimal repair time limit maximizes the expected profit rate. Some special cases are derived.

Keywords

References

  1. Dohi, T. and Kaio, N. (2005), Repair-limit replacement program in industrial maintenance-renewal reward process modeling, Applied Economic informatics and Systems Sciences edited by T. Tokimasa, S. Hiraki and N. Kaio, 157-172, Kyushu University Press, Fukuoka.
  2. Dohi, T. Aoki, T. Kaio, N., and Osaki, S. (1998), Non-parametric preventive maintenance optimization models under earning rate criteria, IIE Trans., 30, 1099-1108.
  3. Dohi, T. Aoki, T. Kaio, N., and Osaki, S. (2001), Optimization the repair time limit replacement schedule with discounting and imperfect repair, Journal of Quality in Maintenance Engineering, 7, 71-84. https://doi.org/10.1108/13552510110386973
  4. Dohi, T. Aoki, T. Kaio, N., and Osaki, S. (2003), The optimal repair-time limit replacement policy with imperfect repair : Lorenz transform approach, Mathematical and Computer Modellin, 38, 1169-1176. https://doi.org/10.1016/S0895-7177(03)90117-8
  5. Dohi, T. Aoki, T. Kaio, N., and Osaki, S. (2006), Statistical estimation algorithms for some repair-limit replacement scheduling problems under earning rate criteria, Computers and Mathematics with Applications, 51, 345-356. https://doi.org/10.1016/j.camwa.2005.11.004
  6. Dohi, T. Kaio, N., and Osaki, S. (2007), Stochastic profit models under repair-limit replacement program, Proceedings of International Workshop on Recent Advances in Stochastic Operations Research II, 27-34.
  7. Dohi, T. Kaio, N., and Osaki, S. (2010), A stochastic profit model under repair-limit replacement program with imperfect repair, Proceedings of 4th Asia-Pacific International Symposium (APARM 2010), 153-160.
  8. Dohi, T., Kaio, N., and Osaki, S. (1995), Solution procedure for a repair limit problem using the TTT concept, IMA Journal of Mathematics Applied in Business and Industry, 6, 101-111.
  9. Dohi, T., Kaio, N., and Osaki, S. (2000), A graphical method to repair cost limit replacement policies with imperfect repair, Mathematical and Computer Modelling, 31, 99-106.
  10. Dohi, T., Kaio, N., and Osaki, S. (2001), Determination of optimal repair-cost limit on the Lorenz curve, Journal of the Operations Research Society of Japan, 44, 207-219. https://doi.org/10.15807/jorsj.44.207
  11. Dohi, T., Kaio, N., and Osaki, S. (2003), A new graphical method to estimate the optimal repair-time limit with incomplete repair and discounting, Computers and Mathematics with Applications, 46, 999-1007. https://doi.org/10.1016/S0898-1221(03)90114-3
  12. Dohi, T., Koshimae, H., Kaio, N., and Osaki, S. (1997), Geometrical interpretations of repair cost limit replacement policies, International Journal of Reliability, Quality and Safety Engineering, 4, 309-333. https://doi.org/10.1142/S0218539397000217
  13. Dohi, T., Matsushima, N., Kaio, N., and Osaki, S. (1996), Nonparametric repair limit replacement policies with imperfect repair, European Journal of Operational Research, 96, 260-273.
  14. Dohi, T., Takeita, K., and Osaki, S. (2000), Graphical methods for determining/ estimating optimal repair-limit replacement policies, International Journal of Reliability, Quality and Safety Engineering, 7, 43-60. https://doi.org/10.1142/S0218539300000055
  15. Drinkwater, R. W. and Hastings, N. A. J. (1967), An economical replacement model, Operational Research Quarterly, 18, 121-138. https://doi.org/10.1057/jors.1967.24
  16. Hastings, N. A. J. (1968), Some notes on dynamic programming and replacement, Operational Research Quarterly, 19, 453-464. https://doi.org/10.1057/jors.1968.103
  17. Hastings, N. A. J. (1969), The repair limit replacement method, Operational Research Quarterly, 20, 337-349. https://doi.org/10.1057/jors.1969.78
  18. Hastings, N. A. J. (1970), Equipment replacement and the repair limit method, In Operational Research in Maintenance, edited by Jardine, A. K. S., 100-118, Manchester University Press, Barnes and Noble Inc., New York.
  19. Kaio, N. and Osaki, S. (1981), Optimum repair limit policies with cost constraint, Microelectronics and Reliability, 21, 597-599. https://doi.org/10.1016/0026-2714(81)90255-9
  20. Kaio, N. and Osaki, S. (1982), Optimum repair limit policies with a time constraint. International Journal of Systems Science, 13, 1345-1350. https://doi.org/10.1080/00207728208926433
  21. Kaio, N., Dohi, T. and Osaki, S. (2002), Classical replacement models, In Stochastic Models in Reliability and Maintenance, edited by Osaki, S., 65-87, Springer-Verlag, Berlin.
  22. Kim, H. G. and Yun, W. Y. (2010), A repair time limit replacement policy with estimation error, Communications in Statistics-Theory and Methods, 39, 1-14.
  23. Koshimae, H., Dohi, T., Kaio, N. and Osaki, S. (1996), Graphical/statistical approach to repair limit replacement problem, Journal of the Operations Research Society of Japan, 39, 230-246. https://doi.org/10.15807/jorsj.39.230
  24. Lambe, T. A. (1974), The decision to repair or scrap a machine, Operational Research Quarterly, 25, 99-110. https://doi.org/10.1057/jors.1974.10
  25. Love, C. E., Rodger, R., and Blazenko, G. (1982), Repair limit policies for vehicle replacement, INFOR, 20, 226-237.
  26. Love, C. E. and Guo, R. (1996), Utilizing Weibull failure rates in repair limit analysis for equipment replacement/preventive maintenance decisions, Journal of Operational Research Society, 47, 1366-1376. https://doi.org/10.1057/jors.1996.172
  27. Muth, E. J. (1977), An optimal decision rule for repair vs replacement, IEEE Transactions on Reliability, R-26, 179-181. https://doi.org/10.1109/TR.1977.5220108
  28. Nakagawa, T. (2006), Maintenance theory of reliability, Springer.
  29. Nakagawa, T. and Mizutani, S. (2009), A summary of maintenance policies for a finite interval, Reliability Engineering and System Safety, 94, 89-96. https://doi.org/10.1016/j.ress.2007.04.004
  30. Nakagawa, T. and Osaki, S. (1974), The optimum repair limit replacement policies, Operational Research Quarterly, 25, 311-317. https://doi.org/10.1057/jors.1974.48
  31. Nguyen, D. G. and Murthy, D. N. P. (1980), A note on the repair limit replacement policy. Journal of Operational Research Society, 31, 1103-1104. https://doi.org/10.1057/jors.1980.205
  32. Nguyen, D. G. and Murthy, D. N. P. (1981), Optimal repair limit replacement policies with imperfect repair, Journal of Operational Research Society, 32, 409-416. https://doi.org/10.1057/jors.1981.79
  33. Wang, H. and Pham, H. (2005), Reliability and optimal maintenance, Springer-Verlag, Lodon.
  34. White, D. J. (1989), Repair limit replacement, OR Spectrum, 11, 143-149. https://doi.org/10.1007/BF01720784

Cited by

  1. A model of vehicle replacement time with overloading cost constraint pp.2327-0039, 2018, https://doi.org/10.1080/23270012.2018.1474390