DOI QR코드

DOI QR Code

Antidiabetic and Beta Cell-Protection Activities of Purple Corn Anthocyanins

  • Hong, Su Hee (Department of Biochemistry, College of Medicine, Hallym University) ;
  • Heo, Jee-In (Department of Biochemistry, College of Medicine, Hallym University) ;
  • Kim, Jeong-Hyeon (Department of Biochemistry, College of Medicine, Hallym University) ;
  • Kwon, Sang-Oh (S&D Co., Ltd.) ;
  • Yeo, Kyung-Mok (S&D Co., Ltd.) ;
  • Bakowska-Barczak, Anna M. (Department of Agricultural, Food and Nutritional Science, University of Alberta) ;
  • Kolodziejczyk, Paul (Department of Fruit, Vegetable and Cereal Technology, Wroclaw University of Environmental and Life Sciences) ;
  • Ryu, Ok-Hyun (Department of Internal Medicine, Chuncheon Sacred Heart Hospital/Hallym University Medical Center) ;
  • Choi, Moon-Ki (Department of Internal Medicine, Chuncheon Sacred Heart Hospital/Hallym University Medical Center) ;
  • Kang, Young-Hee (Department of Food and Nutrition, College of Natural Sciences, College of Medicine, Hallym University) ;
  • Lim, Soon Sung (Institute of Natural Medicine, College of Medicine, Hallym University) ;
  • Suh, Hong-Won (Institute of Natural Medicine, College of Medicine, Hallym University) ;
  • Huh, Sung-Oh (Institute of Natural Medicine, College of Medicine, Hallym University) ;
  • Lee, Jae-Yong (Department of Biochemistry, College of Medicine, Hallym University)
  • Received : 2013.02.07
  • Accepted : 2013.06.18
  • Published : 2013.07.31

Abstract

Antidiabetic and beta cell-protection activities of purple corn anthocyanins (PCA) were examined in pancreatic beta cell culture and db/db mice. Only PCA among several plant anthocyanins and polyphenols showed insulin secretion activity in culture of HIT-T15 cells. PCA had excellent antihyperglycemic activity (in terms of blood glucose level and OGTT) and HbA1c-decreasing activity when compared with glimepiride, a sulfonylurea in db/db mice. In addition, PCA showed efficient protection activity of pancreatic beta cell from cell death in HIT-T15 cell culture and db/db mice. The result showed that PCA had antidiabetic and beta cell-protection activities in pancreatic beta cell culture and db/db mice.

Keywords

References

  1. Ashcroft, F. M. (1988) Adenosine 5'-triphosphate-sensitive potassium channels. Annu. Rev. Neurosci. 11, 97-118. https://doi.org/10.1146/annurev.ne.11.030188.000525
  2. Ashcroft, S. J. and Ashcroft, F. M. (1992) The sulfonylurea receptor. Biochim. Biophys. Acta 1175, 45-59. https://doi.org/10.1016/0167-4889(92)90008-Y
  3. Bickford, P. C., Shukitt-Hale, B. and Joseph, J. (1999) Effects of aging on cerebellar noradrenergic function and motor learning: nutritional interventions. Mech. Ageing Dev. 111, 141-154. https://doi.org/10.1016/S0047-6374(99)00063-9
  4. Bobe, G., Wang, B., Seeram, N. P., Nair, M. G. and Bourquin, L. D. (2006) Dietary anthocyanin-rich tart cherry extract inhibits intestinal tumorigenesis in APC (Min) mice fed suboptimal levels of sulindac. J. Agric. Food Chem. 54, 9322-9328. https://doi.org/10.1021/jf0612169
  5. Butler, A. E., Janson J., Bonner-Weir, S., Ritzel, R., Rizza, R. A. and Butler, P. C. (2003) Beta-cell defi cit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52, 102-110. https://doi.org/10.2337/diabetes.52.1.102
  6. Cirico, T. L. and Omaye, S. T. (2006) Additive or synergetic effects of phenolic compounds on human low density lipoprotein oxidation. Food Chem. Toxicol. 44, 510-516. https://doi.org/10.1016/j.fct.2005.08.025
  7. Del Guerra, S., Marselli, L., Lupi, R., Boggi, U., Mosca, F., Benzi, L., Del Prato, S. and Marchetti, P. (2005) Effects of prolonged in vitro exposure to sulphonylureas on the function and survival of human islets. J. Diabetes Complications 19, 60-64. https://doi.org/10.1016/j.jdiacomp.2004.05.001
  8. Drucker, D. J., Philippe, J., Mojsov, S., Chick, W. L. and Habener, J. F. (1987) Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc. Natl. Acad. Sci. U.S.A. 84, 3434-3438. https://doi.org/10.1073/pnas.84.10.3434
  9. Efanova, I. B., Zaitsev, S. V., Zhivotovsky, B., Kohler, M., Efendic, S., Orrenius, S. and Berggren, P. O. (1998) Glucose and tolbutamide induce apoptosis in pancreatic beta-cells. A process dependent on intracellular $Ca^{2+}$ concentration. J. Biol. Chem. 273, 33501-33507. https://doi.org/10.1074/jbc.273.50.33501
  10. Fehmann, H. C., Goke, R. and Goke, B. (1995) Cell and molecular biology of the incretin hormones glucagon-like peptide-I and glucosedependent insulin releasing polypeptide. Endocr. Rev. 16, 390-410. https://doi.org/10.1210/edrv-16-3-390
  11. Goldstein, B. J. (2002) Insulin resistance as the core defect in type 2 diabetes mellitus. Am. J. Cardiol. 90, 3G-10G.
  12. Holz, G. G. (2004) Epac: A new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic beta-cell. Diabetes 53, 5-13. https://doi.org/10.2337/diabetes.53.1.5
  13. Iwakura, T., Fujimoto, S., Kagimoto, S., Inada, A., Kubota, A., Someya, Y., Ihara, Y., Yamada, Y. and Seino, Y. (2000) Sustained enhancement of $Ca^{2+}$ infl ux by glibenclamide induces apoptosis in RINm5F cells. Biochem. Biophys. Res. Commun. 271, 422-428. https://doi.org/10.1006/bbrc.2000.2616
  14. Jayaprakasam, B., Vareed, S. K., Olson, L. K. and Nair, M. G. (2005) Insulin secretion by bioactive anthocyanins and anthocyanidins present in fruits. J. Agric. Food Chem. 53, 28-31. https://doi.org/10.1021/jf049018+
  15. Juranic, Z. and Zizak, Z. (2005) Biological activities of berries: from antioxidant capacity to anti-cancer effects. BioFactors 23, 207-211. https://doi.org/10.1002/biof.5520230405
  16. Kong, J. M., Chia, L. S., Goh, N. K., Chia, T. F. and Brouillard, R. (2003) Analysis and biological activities of anthocyanins. Phytochemistry 64, 923-933. https://doi.org/10.1016/S0031-9422(03)00438-2
  17. Lebovitz, H. E. and Banerji, M. A. (2004) Treatment of insulin resistance in diabetes mellitus. Eur. J. Pharmacol. 490, 135-146. https://doi.org/10.1016/j.ejphar.2004.02.051
  18. Leiter, E. H. (1989) The genetics of diabetes susceptibility in mice. FASEB J. 3, 2231-2241. https://doi.org/10.1096/fasebj.3.11.2673897
  19. Maedler, K., Carr, R. D., Bosco, D., Zuellig, R. A., Berney, T. and Donath, M. Y. (2005) Sulfonylurea induced beta-cell apoptosis in cultured human islets. J. Clin. Endocrinol. Metab. 90, 501-506. https://doi.org/10.1210/jc.2004-0699
  20. Sasaki, R., Nishimura, N., Hoshino, H., Isa, Y., Kadowaki, M., Ichi, T., Tanaka, A., Nishiumi, S., Fukuda, I., Ashida, H., Horio, F. and Tsuda, T. (2007) Cyanidin 3-glucoside ameliorates hyperglycemia and insulin sensitivity due to downregulation of retinol binding protein 4 expression in diabetic mice. Biochem. Pharmacol. 74, 1619-1627. https://doi.org/10.1016/j.bcp.2007.08.008
  21. Szecowka, J., Grill, V., Sandberg, E. and Efendic, S. (1982) Effect of GIP on the secretion of insulin and somatostatin and the accumulation of cyclic AMP in vitro in the rat. Acta Endocrinol. 99, 416-421.
  22. Takikawa, M., Inoue, S., Horio, F. and Tsuda, T. (2010) Dietary anthocyanin-rich bilberry extract ameliorates hyperglycemia and insulin sensitivity via activation of AMP-activated protein kinase in diabetic mice. J. Nutr. 140, 527-533. https://doi.org/10.3945/jn.109.118216
  23. Tsubouchi, H., Inoguchi, T., Inuo, M., Kakimoto, M., Sonta, T., Sonoda, N., Sasaki, S., Kobayashi, K., Sumimoto, H. and Nawata, H. (2005) Sulfonylurea as well as elevated glucose levels stimulate reactive oxygen species production in the pancreatic beta-cell line, MIN6-a role of NAD(P)H oxidase in beta-cells. Biochem. Biophys. Res. Commun. 326, 60-65.
  24. Tsuda, T., Horio, F., Uchida, K., Aoki, H. and Osawa, T. (2003) Dietary cyanidin 3-O-beta-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. J. Nutr. 133, 2125-2130. https://doi.org/10.1093/jn/133.7.2125

Cited by

  1. Alcohol-free fermented blueberry–blackberry beverage phenolic extract attenuates diet-induced obesity and blood glucose in C57BL/6J mice vol.31, 2016, https://doi.org/10.1016/j.jnutbio.2015.12.013
  2. Potential Renoprotective Agents through Inhibiting CTGF/CCN2 in Diabetic Nephropathy vol.2015, 2015, https://doi.org/10.1155/2015/962383
  3. Anti-diabetic functional foods as sources of insulin secreting, insulin sensitizing and insulin mimetic agents vol.20, 2016, https://doi.org/10.1016/j.jff.2015.10.013
  4. Health Benefits of Purple Corn (Zea maysL.) Phenolic Compounds vol.16, pp.2, 2017, https://doi.org/10.1111/1541-4337.12249
  5. Interactions between antidiabetic drugs and herbs: an overview of mechanisms of action and clinical implications vol.9, pp.1, 2017, https://doi.org/10.1186/s13098-017-0254-9
  6. Anti-diabetic effect of purple corn extract on C57BL/KsJ db/db mice vol.9, pp.1, 2015, https://doi.org/10.4162/nrp.2015.9.1.22
  7. Anthocyanins as promising molecules and dietary bioactive components against diabetes – A review of recent advances vol.68, 2017, https://doi.org/10.1016/j.tifs.2017.07.015
  8. husk extract and fractions vol.24, pp.2, 2018, https://doi.org/10.1080/10496475.2017.1423146
  9. Assessment of antioxidant, antidiabetic, antiobesity, and anti-inflammatory properties of a Tannat winemaking by-product pp.1438-2385, 2019, https://doi.org/10.1007/s00217-019-03252-w
  10. Queen Garnet plum juice and raspberry cordial in mildly hypertensive obese or overweight subjects: A randomized, double-blind study vol.56, pp.None, 2013, https://doi.org/10.1016/j.jff.2019.03.011
  11. Effects of phytochemicals on cellular signaling: reviewing their recent usage approaches vol.60, pp.20, 2013, https://doi.org/10.1080/10408398.2019.1699014
  12. Anthocyanin Pigments: Beyond Aesthetics vol.25, pp.23, 2013, https://doi.org/10.3390/molecules25235500
  13. Pathology, Risk Factors, and Oxidative Damage Related to Type 2 Diabetes-Mediated Alzheimer’s Disease and the Rescuing Effects of the Potent Antioxidant Anthocyanin vol.2021, pp.None, 2013, https://doi.org/10.1155/2021/4051207
  14. Antidiabetic Medicinal Plants Used in Democratic Republic of Congo: A Critical Review of Ethnopharmacology and Bioactivity Data vol.12, pp.None, 2021, https://doi.org/10.3389/fphar.2021.757090
  15. Cyanidin-3-rutinoside stimulated insulin secretion through activation of L-type voltage-dependent Ca2+ channels and the PLC-IP3 pathway in pancreatic β-cells vol.146, pp.None, 2013, https://doi.org/10.1016/j.biopha.2021.112494