References
- Ashcroft, F. M. (1988) Adenosine 5'-triphosphate-sensitive potassium channels. Annu. Rev. Neurosci. 11, 97-118. https://doi.org/10.1146/annurev.ne.11.030188.000525
- Ashcroft, S. J. and Ashcroft, F. M. (1992) The sulfonylurea receptor. Biochim. Biophys. Acta 1175, 45-59. https://doi.org/10.1016/0167-4889(92)90008-Y
- Bickford, P. C., Shukitt-Hale, B. and Joseph, J. (1999) Effects of aging on cerebellar noradrenergic function and motor learning: nutritional interventions. Mech. Ageing Dev. 111, 141-154. https://doi.org/10.1016/S0047-6374(99)00063-9
- Bobe, G., Wang, B., Seeram, N. P., Nair, M. G. and Bourquin, L. D. (2006) Dietary anthocyanin-rich tart cherry extract inhibits intestinal tumorigenesis in APC (Min) mice fed suboptimal levels of sulindac. J. Agric. Food Chem. 54, 9322-9328. https://doi.org/10.1021/jf0612169
- Butler, A. E., Janson J., Bonner-Weir, S., Ritzel, R., Rizza, R. A. and Butler, P. C. (2003) Beta-cell defi cit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52, 102-110. https://doi.org/10.2337/diabetes.52.1.102
- Cirico, T. L. and Omaye, S. T. (2006) Additive or synergetic effects of phenolic compounds on human low density lipoprotein oxidation. Food Chem. Toxicol. 44, 510-516. https://doi.org/10.1016/j.fct.2005.08.025
- Del Guerra, S., Marselli, L., Lupi, R., Boggi, U., Mosca, F., Benzi, L., Del Prato, S. and Marchetti, P. (2005) Effects of prolonged in vitro exposure to sulphonylureas on the function and survival of human islets. J. Diabetes Complications 19, 60-64. https://doi.org/10.1016/j.jdiacomp.2004.05.001
- Drucker, D. J., Philippe, J., Mojsov, S., Chick, W. L. and Habener, J. F. (1987) Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc. Natl. Acad. Sci. U.S.A. 84, 3434-3438. https://doi.org/10.1073/pnas.84.10.3434
-
Efanova, I. B., Zaitsev, S. V., Zhivotovsky, B., Kohler, M., Efendic, S., Orrenius, S. and Berggren, P. O. (1998) Glucose and tolbutamide induce apoptosis in pancreatic beta-cells. A process dependent on intracellular
$Ca^{2+}$ concentration. J. Biol. Chem. 273, 33501-33507. https://doi.org/10.1074/jbc.273.50.33501 - Fehmann, H. C., Goke, R. and Goke, B. (1995) Cell and molecular biology of the incretin hormones glucagon-like peptide-I and glucosedependent insulin releasing polypeptide. Endocr. Rev. 16, 390-410. https://doi.org/10.1210/edrv-16-3-390
- Goldstein, B. J. (2002) Insulin resistance as the core defect in type 2 diabetes mellitus. Am. J. Cardiol. 90, 3G-10G.
- Holz, G. G. (2004) Epac: A new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic beta-cell. Diabetes 53, 5-13. https://doi.org/10.2337/diabetes.53.1.5
-
Iwakura, T., Fujimoto, S., Kagimoto, S., Inada, A., Kubota, A., Someya, Y., Ihara, Y., Yamada, Y. and Seino, Y. (2000) Sustained enhancement of
$Ca^{2+}$ infl ux by glibenclamide induces apoptosis in RINm5F cells. Biochem. Biophys. Res. Commun. 271, 422-428. https://doi.org/10.1006/bbrc.2000.2616 - Jayaprakasam, B., Vareed, S. K., Olson, L. K. and Nair, M. G. (2005) Insulin secretion by bioactive anthocyanins and anthocyanidins present in fruits. J. Agric. Food Chem. 53, 28-31. https://doi.org/10.1021/jf049018+
- Juranic, Z. and Zizak, Z. (2005) Biological activities of berries: from antioxidant capacity to anti-cancer effects. BioFactors 23, 207-211. https://doi.org/10.1002/biof.5520230405
- Kong, J. M., Chia, L. S., Goh, N. K., Chia, T. F. and Brouillard, R. (2003) Analysis and biological activities of anthocyanins. Phytochemistry 64, 923-933. https://doi.org/10.1016/S0031-9422(03)00438-2
- Lebovitz, H. E. and Banerji, M. A. (2004) Treatment of insulin resistance in diabetes mellitus. Eur. J. Pharmacol. 490, 135-146. https://doi.org/10.1016/j.ejphar.2004.02.051
- Leiter, E. H. (1989) The genetics of diabetes susceptibility in mice. FASEB J. 3, 2231-2241. https://doi.org/10.1096/fasebj.3.11.2673897
- Maedler, K., Carr, R. D., Bosco, D., Zuellig, R. A., Berney, T. and Donath, M. Y. (2005) Sulfonylurea induced beta-cell apoptosis in cultured human islets. J. Clin. Endocrinol. Metab. 90, 501-506. https://doi.org/10.1210/jc.2004-0699
- Sasaki, R., Nishimura, N., Hoshino, H., Isa, Y., Kadowaki, M., Ichi, T., Tanaka, A., Nishiumi, S., Fukuda, I., Ashida, H., Horio, F. and Tsuda, T. (2007) Cyanidin 3-glucoside ameliorates hyperglycemia and insulin sensitivity due to downregulation of retinol binding protein 4 expression in diabetic mice. Biochem. Pharmacol. 74, 1619-1627. https://doi.org/10.1016/j.bcp.2007.08.008
- Szecowka, J., Grill, V., Sandberg, E. and Efendic, S. (1982) Effect of GIP on the secretion of insulin and somatostatin and the accumulation of cyclic AMP in vitro in the rat. Acta Endocrinol. 99, 416-421.
- Takikawa, M., Inoue, S., Horio, F. and Tsuda, T. (2010) Dietary anthocyanin-rich bilberry extract ameliorates hyperglycemia and insulin sensitivity via activation of AMP-activated protein kinase in diabetic mice. J. Nutr. 140, 527-533. https://doi.org/10.3945/jn.109.118216
- Tsubouchi, H., Inoguchi, T., Inuo, M., Kakimoto, M., Sonta, T., Sonoda, N., Sasaki, S., Kobayashi, K., Sumimoto, H. and Nawata, H. (2005) Sulfonylurea as well as elevated glucose levels stimulate reactive oxygen species production in the pancreatic beta-cell line, MIN6-a role of NAD(P)H oxidase in beta-cells. Biochem. Biophys. Res. Commun. 326, 60-65.
- Tsuda, T., Horio, F., Uchida, K., Aoki, H. and Osawa, T. (2003) Dietary cyanidin 3-O-beta-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. J. Nutr. 133, 2125-2130. https://doi.org/10.1093/jn/133.7.2125
Cited by
- Alcohol-free fermented blueberry–blackberry beverage phenolic extract attenuates diet-induced obesity and blood glucose in C57BL/6J mice vol.31, 2016, https://doi.org/10.1016/j.jnutbio.2015.12.013
- Potential Renoprotective Agents through Inhibiting CTGF/CCN2 in Diabetic Nephropathy vol.2015, 2015, https://doi.org/10.1155/2015/962383
- Anti-diabetic functional foods as sources of insulin secreting, insulin sensitizing and insulin mimetic agents vol.20, 2016, https://doi.org/10.1016/j.jff.2015.10.013
- Health Benefits of Purple Corn (Zea maysL.) Phenolic Compounds vol.16, pp.2, 2017, https://doi.org/10.1111/1541-4337.12249
- Interactions between antidiabetic drugs and herbs: an overview of mechanisms of action and clinical implications vol.9, pp.1, 2017, https://doi.org/10.1186/s13098-017-0254-9
- Anti-diabetic effect of purple corn extract on C57BL/KsJ db/db mice vol.9, pp.1, 2015, https://doi.org/10.4162/nrp.2015.9.1.22
- Anthocyanins as promising molecules and dietary bioactive components against diabetes – A review of recent advances vol.68, 2017, https://doi.org/10.1016/j.tifs.2017.07.015
- husk extract and fractions vol.24, pp.2, 2018, https://doi.org/10.1080/10496475.2017.1423146
- Assessment of antioxidant, antidiabetic, antiobesity, and anti-inflammatory properties of a Tannat winemaking by-product pp.1438-2385, 2019, https://doi.org/10.1007/s00217-019-03252-w
- Queen Garnet plum juice and raspberry cordial in mildly hypertensive obese or overweight subjects: A randomized, double-blind study vol.56, pp.None, 2013, https://doi.org/10.1016/j.jff.2019.03.011
- Effects of phytochemicals on cellular signaling: reviewing their recent usage approaches vol.60, pp.20, 2013, https://doi.org/10.1080/10408398.2019.1699014
- Anthocyanin Pigments: Beyond Aesthetics vol.25, pp.23, 2013, https://doi.org/10.3390/molecules25235500
- Pathology, Risk Factors, and Oxidative Damage Related to Type 2 Diabetes-Mediated Alzheimer’s Disease and the Rescuing Effects of the Potent Antioxidant Anthocyanin vol.2021, pp.None, 2013, https://doi.org/10.1155/2021/4051207
- Antidiabetic Medicinal Plants Used in Democratic Republic of Congo: A Critical Review of Ethnopharmacology and Bioactivity Data vol.12, pp.None, 2021, https://doi.org/10.3389/fphar.2021.757090
- Cyanidin-3-rutinoside stimulated insulin secretion through activation of L-type voltage-dependent Ca2+ channels and the PLC-IP3 pathway in pancreatic β-cells vol.146, pp.None, 2013, https://doi.org/10.1016/j.biopha.2021.112494