DOI QR코드

DOI QR Code

Development of Real-time Screening System for Superior Melon Seeds Using Optical Coherence Tomography

광간섭 단층촬영법을 이용한 우량 참외 종자 실시간 감별 시스템 개발

  • Han, Seunghoon (Graduate School of Electrical Engineering, Kyungpook National University) ;
  • Lee, Changho (Graduate School of Electrical Engineering, Kyungpook National University) ;
  • Lee, Seung-Yeol (College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Jung, Hee-Young (College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Kim, Jeehyun (Graduate School of Electrical Engineering, Kyungpook National University)
  • 한승훈 (경북대학교 전자공학대학원) ;
  • 이창호 (경북대학교 전자공학대학원) ;
  • 이승열 (경북대학교 농업생명과학대학) ;
  • 정희영 (경북대학교 농업생명과학대학) ;
  • 김지현 (경북대학교 전자공학대학원)
  • Received : 2013.05.15
  • Accepted : 2013.07.09
  • Published : 2013.07.31

Abstract

We developed a real-time screening system using optical coherence tomography (OCT) to distinguish the fruitful melon seeds efficiently. Cross-section images of melon seeds infected with Cucumber green mottle mosaic virus (CGMMV) showed an additional layer that did not appear in normal seeds. Additional layer appeared under $100{\sim}300{\mu}m$ from the surface of the seed. OCT can visualize the micro-structural and morphological changes of the internal seed structure. Real-time OCT seed screening system provided the real-time, non-destructive, cross-section image and quantitative information such as A-scan analysis of selected region in the cross-section image. We can distinguish the viral infection seeds while monitoring the averaged A-scan analysis graph in real-time by considering the second peak value of the graph which refers to the layer that occurred owing to the virus. Real-time OCT seed screening system could assist to distinguish the disease caused by CGMMV.

Keywords

References

  1. H. Wang and G. Stubbs, "Structure determination of cucumber green mottle mosaic virus by X-ray fiber diffraction", J. Mol. Biol., Vol. 239, pp. 371-384, 1994. https://doi.org/10.1006/jmbi.1994.1379
  2. G. C. Ainsworth, "Mosaic disease of cucumber", Ann. Appl. Biol., Vol. 22, pp. 55-67, 1935. https://doi.org/10.1111/j.1744-7348.1935.tb07708.x
  3. S. J. Park, J. H. Lee, M. Nam, C. Y. Park, J. S. Kim, J. H. Lee, E. S. Jun, J. S. Lee, H. S. Choi, J. S. Kim, J. S. Moon, H. G. Kim, and S. H. Lee, "Virus disease incidences and transmission ecology of oriental melons in Seongju area", Res. Plan Dis., Vol. 17, No. 3, pp. 342-350, 2011. https://doi.org/10.5423/RPD.2011.17.3.342
  4. S. K. Lee, W. Y. Song, and H. M. Kim, "Detection of cucumber green mottle mosaic virus in bottle gourd seeds by RT-PCR", Res. Plant Dis., Vol. 10, No. 1, pp. 53-57, 2004. https://doi.org/10.5423/RPD.2004.10.1.053
  5. S. J. Ko, Y. H. Lee, K. H. Cha, J. W. Park, and H. G. Choi, "Detection of CGMMV from commercial cucumber seed and resistance test of cultivars", Res. Plant Dis., Vol. 10, No. 2, pp. 154-158, 2004. https://doi.org/10.5423/RPD.2004.10.2.154
  6. J. K. Choi, H. J. Kim, J. Y. Yoon, S. J. Park, D. W. Kim, and S. Y. Lee, "Detection of virus in fruit and seed of vegetables using RT-PCR", Korean J. Plant Pathol., Vol. 14, No. 6, pp. 630-635, 1998.
  7. R. I. B. Francki, J. Hu, and P. Palukaitis, "Taxonomy of cucurbit-infecting tobamoviruses as determined by serological and molecular hybridization analyses", Intervirology, Vol. 26, pp. 156-163, 1986. https://doi.org/10.1159/000149695
  8. H. Y. Chen, W. J. Zhao, Q. S. Gu, Q. Chen, S. M. Lin, and S. F. Zhu, "Real time TaqMan RT-PCR assay for the detection of cucumber green mottle mosaic virus", J. Virol. Methods, Vol. 149, pp. 326-329, 2008. https://doi.org/10.1016/j.jviromet.2008.02.006
  9. M. Sugiyama, T. Ohara, and Y. Sakata, "A new source of resistance to cucumber green mottle mosaic virus in melon", J. Jpn. Soc. Hortic. Sci., Vol. 75, pp. 469-475, 2006. https://doi.org/10.2503/jjshs.75.469
  10. P. Barreiro, C. Zheng, D. W. Sun, N. Hernandez- Sanchez, J. M. Perez-Sanchez, and J. Ruiz- Cabelloc, "Non-destructive seed detection in mandarins: comparison of automatic threshold methods in flash and comspira MRIs", Postharvest Biol. Technol., Vol. 47, pp. 189-198, 2008. https://doi.org/10.1016/j.postharvbio.2007.07.008
  11. D. W. Sun and B. Li, "Microstructural change of potato tissues frozen by ultrasound-assisted immersion freezing", J. Food Eng., Vol. 57, pp. 337-345, 2003. https://doi.org/10.1016/S0260-8774(02)00354-0
  12. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography", Science, Vol. 254, pp. 1178-1181, 1991. https://doi.org/10.1126/science.1957169
  13. C. Lee, S. Y. Lee, J. Y. Kim, H. Y. Jung, and J. Kim, "Optical sensing method for screening disease in melon seeds by using optical coherence tomography", Sensors, Vol. 11, pp. 9467-9477, 2011. https://doi.org/10.3390/s111009467
  14. A. Reeves, R. L. Parsons, J. W. Hettinger, and J. I. Medford, "In vivo three-dimensional imaging of plants with optical coherence microscopy", J. Microsc., Vol. 208, pp. 177-189, 2002. https://doi.org/10.1046/j.1365-2818.2002.01086.x
  15. I. V. Meglinski, C. Buranachai, and L. A. Terry, "Plant photonics: Application of optical coherence tomography to monitor defects and rots in onion", Laser Phys. Lett., Vol. 7, pp. 307-310, 2010. https://doi.org/10.1002/lapl.200910141
  16. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, and J. A. Izatt, "In vivo video rate optical coherence tomography", Opt. Express, Vol. 3, pp. 219-229, 1998. https://doi.org/10.1364/OE.3.000219
  17. D. Piao and Q. Zhu, "Power-efficient grating-based scanning optical delay line: time-domain configuration", Electron. Lett., Vol. 40, pp. 97-98, 2004. https://doi.org/10.1049/el:20040095
  18. B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography, Marcel Dekker: New York, NY, USA, 2002.
  19. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, "High-speed phase- and group-delay scanning with a grating-based phase control delay line", Opt. Lett., Vol. 22, pp. 1811-1813, 1997. https://doi.org/10.1364/OL.22.001811
  20. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-tonoise ratio in spectral-domain compared with timedomain optical coherence tomography", Opt. Lett., Vol. 28, pp. 2067-2069, 2003. https://doi.org/10.1364/OL.28.002067
  21. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography", Opt. Express, Vol. 11, pp.889-894, 2003. https://doi.org/10.1364/OE.11.000889
  22. N. H. Cho, U. Jung, H. I. Kwon, H. Jeong, and J. Kim, "Development of sd-oct for imaging the in vivo human tympanic membrane", J. Opt. Soc. Korea, Vol. 15, pp. 74-77, 2011. https://doi.org/10.3807/JOSK.2011.15.1.074
  23. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Optical biopsy and imaging using optical coherence tomography", Nat. Med., Vol. 1, pp. 970-972, 1995. https://doi.org/10.1038/nm0995-970
  24. J. H. Kim and B. H. Lee, "Murine heart wall imaging with optical coherence tomography", J. Opt. Soc. Korea, Vol. 10, pp. 42-47, 2006. https://doi.org/10.3807/JOSK.2006.10.1.042