DOI QR코드

DOI QR Code

Use of Gas-Sensor Array Technology in Lung Cancer Diagnosis

  • Kim, Young Jun (Electronics and Telecommunications Research Institute (ETRI)) ;
  • Yu, Han Young (Electronics and Telecommunications Research Institute (ETRI)) ;
  • Baek, In-Bok (Electronics and Telecommunications Research Institute (ETRI)) ;
  • Ahn, Chang-Geun (Electronics and Telecommunications Research Institute (ETRI)) ;
  • Lee, Bong Kuk (Electronics and Telecommunications Research Institute (ETRI)) ;
  • Kim, Yarkyeon (Electronics and Telecommunications Research Institute (ETRI)) ;
  • Yoon, Yong Sun (Electronics and Telecommunications Research Institute (ETRI)) ;
  • Lim, Ji Eun (Electronics and Telecommunications Research Institute (ETRI)) ;
  • Lee, Byeong-Jun (Electronics and Telecommunications Research Institute (ETRI)) ;
  • Jang, Won Ik (Electronics and Telecommunications Research Institute (ETRI)) ;
  • Park, Jeong Ho (Electronics and Telecommunications Research Institute (ETRI)) ;
  • Choi, Chang-Auck (Electronics and Telecommunications Research Institute (ETRI))
  • Received : 2013.07.03
  • Accepted : 2013.07.16
  • Published : 2013.07.31

Abstract

Gas-sensor array technology, which has been much utilized in the field of food technology by the name of 'electronic nose' is drawing attention in diagnosing lung cancer based on the analysis of the exhaled human breath. Much understanding has been accomplished about the composition of the volatile organic compounds (VOCs) of the human exhaled breath, in spite of some variations depending on research groups due mainly to lack of the standardization of the sensing procedures. Since VOCs may be produced during the process of cellular metabolism, difference in the cellular metabolism between healthy cells and lung cancer cells are expected to be reflected on the composition variation of the exhaled VOCs. Several studies have attempted to apply the gas-sensor array technology to lung cancer analysis using many different types of sensors including metal oxide, carbon black-polymer composite, surface acoustic wave, and gold nanoparticles. In this mini-review VOC as biomarkers, sensor array technology and application of the array technology for the diagnosis of cancer disease have been described.

Keywords

References

  1. F. Rock, N. Barsan, and U. Weimar, "Electronic nose: current status and future trends", Chem. Rev., Vol. 108, No. 2, pp. 705-725, 2008. https://doi.org/10.1021/cr068121q
  2. M. Peris and L. Escuder-Gilabert, "A 21st century technique for food control: electronic noses", Anal. Chim. Acta., Vol. 638, No. 1, pp. 1-15, 2009. https://doi.org/10.1016/j.aca.2009.02.009
  3. H. Smyth and D. Cozzolino, "Instrumental methods (spectroscopy, electronic nose, and tongue) as tools to predict taste and aroma in beverages: advantages and limitations", Chem. Rev., Vol. 113, No. 3, pp. 1429-1440, 2013. https://doi.org/10.1021/cr300076c
  4. A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, M. J. Thun, "Cancer statistics, 2009", CA-Cancer J. Clin., Vol. 59, No. 4, pp. 225-249, 2009. https://doi.org/10.3322/caac.20006
  5. A. Jemal, R. Siegel, J. Xu, and E. Ward, "Cancer statistics, 2010", CA-Cancer J. Clin., Vol. 60, No. 5, pp. 277-300, 2010. https://doi.org/10.3322/caac.20073
  6. D. M. Cutler, "Are we finally winning the war on cancer", J. Eco. Perspect., Vol. 22, No. 4, pp. 3-26, 2008.
  7. S. M. Gordon, J. P. Szidon, B. K. Krotoszynski, R. D. Gibbons, and H. J. O'Neill, "Volatile organic compounds in exhaled air from patients with lung cancer", Clin. Chem., Vol. 31, No. 8, pp. 1278-1282, 1985.
  8. H. J. O'Neil., S. M., Gordon, M. H. O'Neil, R. D. Gibbons and J. P. Szidon, "A computerized classification technique for screening for the presence of breath biomarkers in lung cancer", Clin. Chem., Vol. 34, No. 8, pp. 1613-618, 1988.
  9. G. Preti, J. N. Labows, J. G. Kostelc, S. Aldinger, and R. Daniele, "Analysis of lung air from patients with bronchogenic carcinoma and controls using gas chromatography-mass spectrometry", J. Chromatogr. B, Vol. 432, pp. 1-11, 1988. https://doi.org/10.1016/S0378-4347(00)80627-1
  10. C. D. Natale, A. Macagnano, E. Martinelli, R. Paolesse, G. D. Arcangelo, C. Roscioni, A. F. Agro, and A. D. Amico, "Lung cancer identification by the analysis of breath by means of an array of nonselective gas sensors", Biosens. Bioelectron., Vol. 18, No. 10, pp. 1209-1218, 2003. https://doi.org/10.1016/S0956-5663(03)00086-1
  11. J. B. Yu, H. G. Byun, J. O. Lim, and J. S. Huh, "Exhaled breath analysis of lung cancer patients using metal oxide sensor", 2011 First ACIS/JNU International Conference on Computers, Networks, Systems, and Industrial Engineering, No. 5954327, pp. 281-284, 2011.
  12. R. F. Machado, D. Laskowski, O. Deffenderfer, T. Burch, S. Zheng, P. J. Mazzone, T. Mekhall, C. Jennings, J. K. Stoller, J. Pyle, J. Duncan, R. A. Dweik, and S. C. Erzurum, "Detection of lung cancer by sensor array analyses of exhaled breath", Am. J. Resp. Crit. Care., Vol. 171, No. 11, pp. 1286-1291, 2005. https://doi.org/10.1164/rccm.200409-1184OC
  13. X. Chen, M. Cao, Y. Li, W. Hu, P. Wang, K. Ying, and H. Pan, "A study of an electronic nose for detection of lung cancer based on a virtual SAW gas sensors array and imaging recognition method", Meas. Sci. Technol., Vol. 16, No. 8, pp. 1535-1546, 2005. https://doi.org/10.1088/0957-0233/16/8/001
  14. P. J. Mazzone, J. Hammel, R. Dweik, J. Na, C. Czich, D. Laskowski, and T. Mekhail, "Diagnosis of lung cancer by the analysis of exhaled breath with a colorimetric sensor array", Thorax, Vol. 62, No. 7, pp. 565-568, 2007. https://doi.org/10.1136/thx.2006.072892
  15. O. Barash, N. Peled, U. Tisch, P. A. Bunn, F. R. Hirsch, and H. Haick, "Classification of lung cancer histology by gold nanoparticle sensors", Nanomedicine: NBM, Vol. 8, No. 5, pp. 580-589, 2012. https://doi.org/10.1016/j.nano.2011.10.001
  16. M. Hakim, Y. Y. Broza, O. Barash, N. Peled, M. Phillips, A. Amann, and H. Haick, "Volatile organic compounds of lung cancer and possible biochemical pathways", Chem. Rev., Vol. 112, No. 11, pp. 5949-5966, 2012. https://doi.org/10.1021/cr300174a
  17. W. Miekisch, J. K. Schubert, and G. F. E. N.-Schomburg, "Diagnostic potential of breath analysis-Focus on volatile organic compounds", Clin. Chim. Acta, Vol. 347, No. 1-2, pp. 25-39, 2004. https://doi.org/10.1016/j.cccn.2004.04.023
  18. F. Rock, N. Barsan, and U. Weimar, "Electronic nose: Current status and future trends", Chem. Rev., Vol. 108, No. 2, pp. 705-725, 2008. https://doi.org/10.1021/cr068121q
  19. P. Gostelow, S. A. Parsons, and R. M. Stuetz, "Odour measurements for sewage treatment works", Water Res., Vol. 35, No. 3, pp. 579-597, 2001. https://doi.org/10.1016/S0043-1354(00)00313-4
  20. K. J. Albert, N. S. Lewis, C. L. Schauer, G. A. Sotzing, S. E. Stitzel, T. P. Vaid, and D. R. Walt, "Cross-reactive chemical sensor arrays", Chem. Rev., Vol. 100, No. 7, pp. 2595-2626, 2000. https://doi.org/10.1021/cr980102w
  21. V. Krivetskiy, A. Ponzoni, E. Comini, S. Badalyan, M. Rumyantseva, and A. Gaskov, "Selectivity modification of $SnO_{2}$-based materials for gas sensor arrays", Electroanal., Vol. 22, No. 23, pp. 2809-2816, 2010. https://doi.org/10.1002/elan.201000277
  22. G. Liu, Z.-J. Tan, C. Wang, R.-F. Wu, and H.-J. Zhang, "Soft template synthesis of high selectivity mesoporous $SnO_{2}$ gas sensors", J. Shanghai Univ., Vol. 14, No. 4, pp. 297-300, 2010. https://doi.org/10.1007/s11741-010-0647-3
  23. J. P. Viricelle, A. Pauly, L. Mazet, J. Brunet, M. Bouvet, C. Varenne, and C. Pijolat, "Selectivity improvement of semi-conducting gas sensors by selective filter for atmospheric pollutants detection", Mater. Sci. Eng. C-Mater. Biol. Appl., Vol. 26, No. 3, pp. 186-195, 2006. https://doi.org/10.1016/j.msec.2005.10.062
  24. M. G. Varnamkhasti, S. S. Mohtasebi, M. L. R.-Mendez, J. Lozano, S. H. Razavi, and H. Ahmadi, "Potential application of electronic nose technology in brewery", Trends Food Sci. Technol., Vol. 22, No. 4, pp. 165-174, 2011. https://doi.org/10.1016/j.tifs.2010.12.005
  25. C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, "Metal oxide gas Sensors: sensitivity and influencing factors", Sensors, Vol. 10, No. 3, pp. 2088-2106, 2010. https://doi.org/10.3390/s100302088
  26. H. Lei, W. G. Pitt, L. K. McGrath, and C. K. Ho, "Modeling carbon black/polymer composite sensors," Sens. Actuator B-Chem., Vol. 125, No. 2, pp. 396-407, 2007. https://doi.org/10.1016/j.snb.2007.02.041
  27. E. A. Baldwin, J. Bai, A. Plotto, and S. Dea, "Electronic noses and tongues: Applications for the food and pharmaceutical industries", Sensors, Vol. 11, No. 5, pp. 4744-4766, 2011 https://doi.org/10.3390/s110504744
  28. M. Phillips, K. Gleeson, J. B. M. Hughes, J. Greenberg, R. N. Cataneo, L. Baker, and W. P. McVay "Volatile organic compounds in breath as markers of lung cancer: A cross-sectional study", Lancet, Vol. 353, No. 9168, pp. 1930-1933, 1999. https://doi.org/10.1016/S0140-6736(98)07552-7
  29. D. Poli, P. Carbognani, M. Corradi, M. Goldoni, O. Acampa, B. Balbi, L. Bianchi, M. Rusca, and A. Mutti. "Exhaled volatile organic compounds in patients with non-small cell lung cancer: cross sectional and nested short-term follow-up study", Resp. Res., Vol. 6, No. 71, pp. 1-10, 2005. https://doi.org/10.1186/1465-9921-6-1
  30. Y. J. Kim, Y. S. Yang, S. C. Ha, S. M. Cho, Y. S. Kim , H. Y. Kim, H. Yang, and Y. T. Kim, "Mixed-ligand nanoparticles of chlorobenzenethiol and n-octanethiol as chemical sensors", Sens. Actuator B-Chem., Vol. 106, pp. 189-198, 2005. https://doi.org/10.1016/j.snb.2004.05.056
  31. N. Krasteva, I. Besnard, B. Guse, R. E. Bauer, K. Muller, A. Yasuda, and T. Vossmeyer, "Selfassembled gold nanoparticle/dendrimer composite films for vapor sensing applications", Nano Lett., Vol. 2, No. 5, pp. 551-555, 2002. https://doi.org/10.1021/nl020242s

Cited by

  1. Nerve Agents and Their Detection vol.23, pp.4, 2014, https://doi.org/10.5369/JSST.2014.23.4.217