DOI QR코드

DOI QR Code

A Simulated Annealing Algorithm for Maximum Lifetime Data Aggregation Problem in Wireless Sensor Networks

무선 센서 네트워크에서 최대 수명 데이터 수집 문제를 위한 시뮬레이티드 어닐링 알고리즘

  • Jang, Kil-Woong (Department of Data Information, Korea Maritime University)
  • Received : 2013.03.19
  • Accepted : 2013.04.30
  • Published : 2013.07.31

Abstract

The maximum lifetime data aggregation problem is to maximize the network lifetime as minimizing the transmission energy of all deployed nodes in wireless sensor networks. In this paper, we propose a simulated annealing algorithm to solve efficiently the maximum lifetime data aggregation problem on the basis of meta-heuristic approach in wireless sensor networks. In order to make a search more efficient, we propose a novel neighborhood generating method and a repair function of the proposed algorithm. We compare the performance of the proposed algorithm with other existing algorithms through some experiments in terms of the network lifetime and algorithm computation time. Experimental results show that the proposed algorithm is efficient for the maximum lifetime data aggregation problem in wireless sensor networks.

무선 센서 네트워크에서 최대 수명 데이터 수집 문제는 네트워크에 배치된 모든 노드의 데이터 전송 에너지를 최소화함으로써 네트워크의 수명을 최대화하는 문제이다. 본 논문은 무선 센서 네트워크에서 최대 수명 데이터 수집문제를 효과적으로 해결하기 위한 메타휴리스틱 기법 중 하나인 시뮬레이티드 어닐링 알고리즘을 제안한다. 제안된 알고리즘에서는 보다 효과적인 해를 찾기 위해 새로운 이웃해 생성방식과 복구함수를 적용한다. 제안된 알고리즘의 성능은 네트워크 수명과 알고리즘 실행시간 관점에서 기존의 알고리즘과 비교평가 하였으며, 실험 결과에서 제안된 알고리즘이 최대 수명 데이터 수집 문제에 효과적으로 적용됨을 보여준다.

Keywords

References

  1. I. F. Akyildiz, W. Su, Y. Sankarasubermanian, and E. Cayirici, "A survey of sensor networks", IEEE Communications Magazine, vol. 40, pp. 102-14, 2002.
  2. R. Min, M. Bhardwaj, S. Cho, A. Sinha, E. Shih, A. Wang, and A. Chandrakasan, "Low-power wireless sensor networks", VLSI Design, 2001.
  3. Tubaishat. M and Madria. S, "Sensor networks: An overview", IEEE Potentials, vol. 22, pp. 20-23, Feb. 2003.
  4. Wang. J and Howitt. I, "Optimal traffic distribution in minimum energy wireless sensor networks", in 2005 IEEE Global Telecommunications Conference, pp. 3274-3278, 2005.
  5. J. Stanford and S. Tongngam, "Approximation algorithm for maximum lifetime in wireless sensor networks with data aggregation," in Proceedings of the Seventh ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel / Distributed Computing (SNPD), pp. 273-277, June 2006.
  6. K. Kalpakis and S. Tang, "A combinatorial algorithm for the Maximum Lifetime Data Gathering and Aggregation problem in sensor networks," in Proceedings of the International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1-8, June 2008.
  7. H. O. Tan and I. Korpeoglu, "Power Efficient Data Gathering and Aggregation in Wireless Sensor Networks," ACMSIG MOD Record, vol. 32, no. 4, pp. 66-71, Dec. 2003.
  8. W. Liang and Y. Liu, "Online Data Gathering for Maximizing Network Lifetime in Sensor Networks," IEEE Transaction on Mobile Computing, vol. 1, no. 2, pp. 2-11, Jan. 2007.
  9. Y. Wu, S. Fahmy, and N. B. Shroff, "On the Construction of a Maximum-Lifetime Data Gathering Tree in Sensor Networks: NP-Completeness and Approximation Algorithm," in Proceedings of the IEEE INFOCOM, pp. 356-360, April 2008.
  10. W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, "Energy efficient communication protocol for wireless microsensor networks," in 33rd Annual Hawaii International Conference on System Sciences, pp. 3005-3014, 2000.
  11. S. Lindsey and C. S. Raghavendra, "Pegasis: Powerefficient gathering in sensor information systems," in IEEE Aerospace Conference, March 2002.
  12. J. Holland, Adaptation in Natural and Artificial Systems, Univ. of Michigan Press, 1975.
  13. D. E. Goldberg, Genetic Algorithms in Search, Optimization & Machine Learning, Addison Wesley, 1989.
  14. J. Antonisse, "A new interpretation of schema notation that overturns the binary encoding constraint," in Proceedings of the 3rd International Conference on Genetic Algorithms, pp. 86-91, 1989.