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Abstract

We introduce the PMλ,τ service policy, as a generalized two-stage service policy of
the PMλ policy of Bae et al. (2002) for an M/G/1 queueing system. By using the level
crossing theory and solving the corresponding integral equations, we obtain the explicit
expression for the stationary distribution of the workload in the system.

Keywords: M/G/1 queue, PMλ,τ service policy, stationary distribution.

1. Introduction

Bae et al. (2002) introduced the PMλ service policy for an M/G/1 queueing system; when
a customer arrives, the server starts to work with service speed 1, that is, the workload of the
server starts to decrease by one per unit time, until the workload in the system exceeds the
threshold λ > 0. As soon as this occurs, the server increases his/her service speed to M ≥ 1
instantaneously, and the decrease in the workload becomes M per unit time until the system
becomes empty. Under this policy, Bae et al. (2002) obtained the stationary distribution of
the workload process. After assigning the corresponding costs, Kim et al. (2006) showed the
existence of the optimal service speed M which minimizes the long-run average cost per unit
time. Recently, Kim et al. (2011) derived the long-run average cost per unit time under the
PMλ policy in an infinite dam with exponential inputs.

In this paper, we generalize the PMλ service policy by adopting the PMλ,τ releasing policy

for a dam model. The PMλ,τ policy was introduced by Yeh (1985) as a generalized releasing

policy of the PMλ policy of Faddy (1974) for a dam with input formed by a Wiener process;
the release rate is kept at 0 until the level of water exceeds the threshold λ and, as soon as
this occurs, water is released at rate M > 0 not until the dam is empty but until the level of
water reaches the threshold τ with 0 < τ < λ. Abdel-Hameed (2000) considered the optimal
control of an infinite dam using PMλ,τ policies when the input process is a compound Poisson
process with positive drift. Bae et al. (2003) determined the long-run average cost per unit
time under the PMλ,τ policy in a finite dam with a compound Poisson input.
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We modify this PMλ,τ policy and introduce it as a generalized two-stage service policy of

the PMλ policy of Bae et al. (2002) for the M/G/1 queueing system. A server is initially
idle and starts to work, if a customer arrives, with ordinary service speed 1. The customers
arrive according to a Poisson process of rate ν > 0 and each customer brings a job consisting
of an amount of work to be processed, that is independent and identically distributed with
a distribution function G and a mean m > 0, and is also independent of the arrival process.
If the workload exceeds the threshold λ > 0, the server increases the service speed to M ≥ 1
instantaneously and continues to follow that service speed until the workload level reaches
τ with 0 ≤ τ < λ. When the workload reaches level τ , the service speed is changed again
to 1 instantaneously. The service speed 1 is kept until the level up-crosses λ again. For the
stability of the system, we assume that ρ := νm < 1. Clearly, the PMλ,τ policy coincides with

the PMλ policy in case τ = 0. When M = 1, both policies are reduced to the ordinary service
policy for the M/G/1 queueing system. Lee and Kim (2006) studied the similar two-stage
service policy for the workload-dependent M/G/1 queueing systems and Bar-Lev and Perry
(1993) considered the two-stage release rule procedure in a regenerative dam. Both dealt
with the case that the service rate or the release rate is dependent on the current state of
the system, which results in the complicated expression for the stationary distribution in
terms of a certain positive kernel.

In section 2, we derive the stationary distribution of the workload of this system in the
simpler form by using the level crossing arguments of Cohen (1977). In section 3, as an
example we obtain an explicit distribution for M/M/1 queueing system under the PMλ,τ
service policy.

2. The stationary distribution of the workload

Let X(t) denote the workload of the system at time t under the PMλ,τ service policy. If we
define, for n = 1, 2, . . .,

Tλn := inf{t > T τn−1 | X(t) > λ} and T τn := inf{t > Tλn | X(t) = τ},

with T τ0 = 0, then {X(t), t ≥ 0} is a delayed regenerative process having T τ1 , T τ2 , . . . as
regeneration points. Since {X(t), t ≥ 0} is not a Markov process, to analyze the process
{X(t), t ≥ 0}, we decompose it into two Markov processes. Let {X1(t), t ≥ 0} be a process
obtained from {X(t), t ≥ 0} by deleting the time periods from Tλn to T τn , for all n = 1, 2, . . .,
and by gluing together the remaining periods. Note that in the process {X1(t), t ≥ 0} the
system operates with service speed 1. Let {X2(t), t ≥ 0} be formed similarly by separating
and connecting the periods which start at Tλn and end at T τn , for all n = 1, 2, . . .. Then,
clearly the process {X2(t), t ≥ 0} has the service speed M . We note that the idle periods
in {X(t), t ≥ 0} are exactly those of {X1(t), t ≥ 0} and that no idle periods exist in
{X2(t), t ≥ 0}.

Let C be the cycle of the process {X(t), t ≥ 0} and Ci of the process {Xi(t), t ≥ 0}
for i = 1, 2. Then obviously C = C1 + C2. Because {X(t), t ≥ 0} and {Xi(t), t ≥ 0}, for
i = 1, 2, are regenerative processes with finite mean cycles, each process has its stationary
distribution function. Let F be the stationary distribution function of {X(t), t ≥ 0}, and
Fi of {Xi(t), t ≥ 0}, for i = 1, 2. Then it follows that

F (x) = bF1(x) + (1− b)F2(x), 0 ≤ x <∞,
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where b := E[C1]/E[C]. Notice that F1 has a jump at zero. If we denote the jump size of F1

at zero by a, then F can be rewritten as

F (x) = ab+ (1− a)bF ac1 (x) + (1− b)F2(x), 0 ≤ x <∞,

where F ac1 denotes the absolutely continuous part of F1.

2.1. Level crossing equations

For i = 1, 2, let Di(x) and Ui(x) be the numbers of down- and up-crossings of level x by
the process {Xi(t), t ≥ 0} during Ci, respectively, and Ni the number of arrivals during Ci.
By convention the arrival that causes {X(t), t ≥ 0} to up-cross level λ for the first time
during C is counted only in N1.

Because the process {X(t), t ≥ 0} is the delayed regenerative process having the same
level τ at all regeneration points T τn , n = 1, 2, . . ., the number of up-crossings of level x
equals the number of down-crossings of that level during C. Observing the sample paths of
two processes {Xi(t), t ≥ 0}, for i = 1, 2, we have that

D1(x)
a.s.
=

{
U1(x), 0 < x < τ,

U1(x)− 1, τ ≤ x < λ,
(2.1)

and

D2(x)
a.s.
=

{
U2(x) + 1, τ < x < λ,

U2(x) + U1(x), x ≥ λ,
(2.2)

where U1(x) in (2.2) means the number of arrivals during C1 that cause the process {X1(t), t ≥
0} to up-cross both level λ and level x (≥ λ) simultaneously, in other words, for x ≥ λ,

U1(x) =

{
1, X(Tλn ) > x,

0, otherwise.

By using the level crossing theory (Cohen, 1977; Lee, 2008), for the number of down-
crossings we have that

E[D1(x)] = E[C1](1− a)fac1 (x), 0 < x < λ, (2.3)

E[D2(x)] = ME[C2]f2(x), τ < x <∞, (2.4)

where fac1 and f2 are densities corresponding to F ac1 and F2, respectively. Let X1 and X2

be the generic random variables with distributions F1 and F2, respectively, and S be the
random variable representing the amount of work that each arriving customer carries to the
system. Then, we also have that

E[U1(x)] = E[N1]E[1{X1≤x} − 1{X1+S≤x}], 0 < x < λ, (2.5)

E[U2(x)] = E[N2]E[1{X2≤x} − 1{X2+S≤x}], τ < x <∞. (2.6)

Taking expectations in (2.1) and (2.2) and using the relations (2.3), (2.4), (2.5), and (2.6)
yield the following level crossing equations:

(1− a)fac1 (x) =

ν
∫ x
0

(1−G(x− y))dF1(y), 0 < x < τ,

ν
∫ x
0

(1−G(x− y))dF1(y)− 1

E[C1]
, τ ≤ x < λ,

(2.7)
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and

Mf2(x) =


ν
∫ x
τ

(1−G(x− y))f2(y)dy +
1

E[C2]
, τ < x < λ,

ν
∫ x
τ

(1−G(x− y))f2(y)dy +
E[U1(x)]

E[C2]
, x ≥ λ,

(2.8)

since E[Ni]/E[Ci] = ν, for i = 1, 2.
Let Tx be the exit time of the process {X1(t), t ≥ 0}, starting at x, from (0, λ], namely,

Tx := inf{t ≥ 0 | X1(t) /∈ (0, λ], X1(0) = x}, 0 ≤ x ≤ λ,

and define
P (l, x) := Pr{X1(Tx) > λ+ l}, l ≥ 0, 0 ≤ x ≤ λ.

Bae et al. (2002) obtained

P (l, x) =
(H1 ∗ G̃l)(λ)

H1(λ)
H1(λ− x)− (H1 ∗ G̃l)(λ− x), l ≥ 0, 0 ≤ x ≤ λ,

where G̃l(x) := ρ(Ge(x + l) − Ge(l)), Ge(x) := (1/m)
∫ x
0

(1 − G(y))dy, the equilibrium
distribution of G, and

H1(x) :=

{∑∞
n=0 ρ

nG∗ne (x), x ≥ 0,

0, x < 0,

the renewal function and G∗ne denotes the nth convolution power of Ge with G∗0e begin the
Heaviside function.

Now, we observe the excess amount over λ at the first exit time from [0, λ] for the process
{X(t), t ≥ 0}. Note that it is the same as the excess amount over λ at the end of the cycle of
the process {X1(t), t ≥ 0}. Bae et al. (2003) derived the distribution of the excess amount
over λ, denoted by Lx, starting with x, in terms of P (l, x) and it is given by

Px(l) := Pr{Lx ≤ l}

= 1− P (l, x)− νH1(λ− x)

H ′1(λ)

(
1−G(λ+ l) +

∫ λ

0

P (l, y)dG(y)

)
. (2.9)

2.2. The stationary distribution

Since D1(x) ≤ N1 with probability 1 for 0 < x < λ, and N1 is integrable, it follows,
from the dominated convergence theorem, that limx→0+ E[D1(x)] = E[D1(0+)] exists. From
the Markovian property of the process {X1(t), t ≥ 0}, we can show that D1(0+) has the
following distribution:

Pr{D1(0+) = n} =

{
P (0, τ), n = 0,

(1− P (0, τ))Pλ(1− Pλ)n−1, n ≥ 1,

where Pλ is the probability that the process {X1(t), t ≥ 0}, leaving from 0, up-crosses level
λ before returning to 0, which is given by

Pλ = 1−G(λ) +

∫ λ

0

P (0, x)dG(x) =
H ′1(λ)

νH1(λ)
.
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Therefore, we have

E[D1(0+)] =
νH1(λ− τ)

H ′1(λ)
. (2.10)

Letting x→ 0+ in the first equation of (2.7) gives

(1− a)fac1 (0+) = aν. (2.11)

Substituting (2.10) and (2.11) into (2.3) yields

E[C1] =
H1(λ− τ)

aH ′1(λ)

and from the relation b = E[C1]/(E[C1] + E[C2]), it follows that

E[C2] =
(1− b)H1(λ− τ)

abH ′1(λ)
.

The expectation E[U1(x)] for x ≥ λ is equal to the probability that the excess amount
over λ for the process {X1(t), t ≥ 0}, starting at τ , is greater than x − λ. That is exactly
1− Pτ (x− λ) of (2.9). Thus (2.7) and (2.8) can be rewritten as follows:

fac1 (x) =


a

1− a
ρge(x) +

∫ x
0
ρge(x− y)fac1 (y)dy, 0 < x < τ,

a

1− a

(
ρge(x)− H ′1(λ)

H1(λ− τ)

)
+
∫ x
0
ρge(x− y)fac1 (y)dy, τ ≤ x < λ,

0, otherwise,

(2.12)

and

f2(x) =


abH ′1(λ)

(1− b)MH1(λ− τ)
+
∫ x
τ

ρ

M
ge(x− y)f2(y)dy, τ < x < λ,

abH ′1(λ)(1− Pτ (x− λ))

(1− b)MH1(λ− τ)
+
∫ x
τ

ρ

M
ge(x− y)f2(y)dy, x ≥ λ,

0, otherwise,

(2.13)

where ge(x) := G′e(x) = (1/m)(1−G(x)). Therefore, we have the following theorem:

Theorem 2.1 The stationary densities fac1 and f2 are given, respectively, by

fac1 (x) =


aH ′1(x)

1− a
, 0 < x < τ,

a

1− a

(
H ′1(x)− H ′1(λ)H1(x− τ)

H1(λ− τ)

)
, τ ≤ x < λ,

0, otherwise,

(2.14)

and

f2(x) =



abH ′1(λ)HM (x− τ)

(1− b)MH1(λ− τ)
, τ < x < λ,

abH ′1(λ)

(1− b)MH1(λ− τ)
(HM (x− τ)− Pτ (x− λ)

−
∫ x
λ
H ′M (x− y)Pτ (y − λ)dy

)
, x ≥ λ,

0, otherwise,

(2.15)
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where

HM (x) :=

{∑∞
n=0

(
ρ
M

)n
G∗ne (x), x ≥ 0,

0, x < 0,

and finally a and b are determined by two normalizing conditions

a+ (1− a)

∫ λ

0

fac1 (x)dx = 1

and ∫ ∞
τ

f2(x)dx = 1.

Proof : Using the bound ge(x) ≤ 1/m, it follows easily by induction that

g∗ne (x) =

∫ x

0

g∗n−1e (x− y)ge(y)dy ≤ xn−1

mn(n− 1)!
, x ≥ 0,

for all n ≥ 1 and hence H ′1(x) =
∑∞
n=1 ρ

ng∗ne (x) is well-defined. Iterating the first equation
of (2.12) and using the dominated convergence theorem give

fac1 (x) =
a

1− a
H ′1(x).

The second equation of (2.12) can be restated as

fac1 (x) =
a

1− a

(
ρge(x)− H ′1(λ)

H1(λ− τ)
+

∫ τ

0

ρge(x− y)H ′1(y)dy

)
+

∫ x

τ

ρge(x− y)fac1 (y)dy

=
a

1− a

(
H ′1(x)− H ′1(λ)

H1(λ− τ)

)
+

∫ x

τ

ρge(x− y)

(
fac1 (y)− a

1− a
H ′1(y)

)
dy,

and hence, for τ ≤ x < λ,

fac1 (x)− a

1− a
H ′1(x) =− a

1− a
H ′1(λ)

H1(λ− τ)

+

∫ x

τ

ρge(x− y)

(
fac1 (y)− a

1− a
H ′1(y)

)
dy.

Iterating the above equation and using the dominated convergence theorem give the second
equation of (2.14). Similarly, iterating (2.13) gives (2.15), sinceH ′M (x) =

∑∞
n=1(ρ/M)ng∗ne (x)

is well-defined. �

3. The case of exponential jumps

In this section, we consider the special case of exponential jumps, that is,G(x) = 1−e−x/m,
for all x ≥ 0. By the memoryless property of the exponential random variable, for all starting
level x (0 < x ≤ λ), the probability Px(l) of (2.9) is given by

Px(l) = 1− e−l/m, l ≥ 0,
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which is independent of starting level x. Let θ1 = 1/m− ν and θM = 1/m− ν/M , then

H1(x) =
1− ρe−θ1x

1− ρ
and HM (x) =

M − ρe−θMx

M − ρ
.

We can obtain that

P (l, x) =
ρe−l/m(e−θ1(λ−x) − e−θ1λ)

1− ρe−θ1λ
, l ≥ 0, 0 ≤ x ≤ λ,

and

Pλ =
(1− ρ)e−θ1λ

1− ρe−θ1λ
.

Therefore the densities can be derived by

fac1 (x) =


aνe−θ1x

1− a
, 0 < x < τ,

aν(e−θ1x − e−θ1λ)

(1− a)(1− ρe−θ1(λ−τ))
, τ ≤ x < λ,

0, otherwise,

and

f2(x) =


abν(1− ρ)e−θ1λ(M − ρe−θM (x−τ))

M(1− b)(M − ρ)(1− ρe−θ1(λ−τ))
, τ < x < λ,

abν(1− ρ)e−θ1λ(Me−θM (x−λ) − ρe−θM (x−τ))

M(1− b)(M − ρ)(1− ρe−θ1(λ−τ))
, x ≥ λ,

0, otherwise.

Applying the normalizing conditions, we have

a =
(1− ρ)(1− ρe−θ1(λ−τ))

1− ρe−θ1(λ−τ) − ν(1− ρ)(m+ λ− τ)e−θ1λ

and

b =
M − ρ

M − 1 + a
.

It coincides with the probability density for the case that r1 = 1 and r2 = M in Lee and
Kim (2006).

Remark 3.1 If τ decreases to 0, this stationary distribution of the workload process coin-
cides with that of the M/M/1 queue under the PMλ policy obtained in Bae et al. (2002).
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