DOI QR코드

DOI QR Code

Adsorption Characteristic of Carbon Dioxide on Activated Carbon Impregnated with Piperazine

Piperazine으로 함침된 활성탄의 이산화탄소 흡착 특성

  • Choi, Sung-Woo (Department of Environmental Science and Engineering, Keimyung University)
  • Received : 2012.12.26
  • Accepted : 2013.04.10
  • Published : 2013.07.31

Abstract

Functionalized adsorbent has been synthesized by piperazine(Pz) on activated carbon. Quantitative estimations of $CO_2$ were undertaken using gas chromatography with GC/TCD and the prepared adsorbents were characterized by BET surface area and FT-IR. It was also studied effect of various parameters such as piperazine loadings and adsorption temperature. The specific surface area decreased from $1212.0m^2/g$ to $969.8m^2/g$ by impregnation and FT-IR revealed a N-H functional group at about $1400cm^{-1}$ to $1700cm^{-1}$. The $CO_2$ adsorption capacity at $20^{\circ}C$ and $50{\sim}100^{\circ}C$ was as follow: AC > Pz(10)-AC> Pz(30)-AC> Pz(50)-AC at $20^{\circ}C$ and Pz(10)-AC > AC > Pz(30)-AC> Pz(50)-AC at $50{\sim}100^{\circ}C$. Therefore, for high temperature flue gas condition, the Pz(10)-AC showed the highest adsorption capacity due to physical adsorption and chemical adsorption by amino-group content. The results suggest that activated carbon impregnated with Pz is an effective adsorbent for $CO_2$ capture from real flue gases above $50^{\circ}C$.

Keywords

References

  1. Amalina, M. D., Ibrahem, A. S., Hadi, A., 2012, General study about activated carbon for adsorption carbon dioxide, J. Purity Util. React. Environ., 1(5), 206-221.
  2. Belmabkhout, Y., Serna-Guerrero, R., Sayari, A., 2009, Adsorption of $CO_{2}$ from dry gases on MCM41 silica at ambient temperature and high pressure. 1: pure $CO_{2}$ adsorption, Chem. Eng. Sci., 64(17), 3721-3728. https://doi.org/10.1016/j.ces.2009.03.017
  3. Chatti, R., Bansiwal, A. K., Thote, J. A., Kumar, V., Jadhav, P., Lokhande, S. K., Biniwale, R. B., Labhsetwar, N. K., Rayalu, S. S., 2009, Amine loaded zeolites for carbon dioxide capture: amine loading and adsorption studies, Micropor. Mesopor. Mat., 121, 84-89. https://doi.org/10.1016/j.micromeso.2009.01.007
  4. Choi, S. W., 2011, Adsorption of $CO_{2}$ on amineimpregnated mesoporous Silica, J. Environ. Sci. Int., 20(7), 873-879. https://doi.org/10.5322/JES.2011.20.7.873
  5. Hong, M. S., Pankaj, S., Jung, Y. H., Park, S. Y., Park, S. J., Baek, Y. H, , 2012, Separation of carbon dioxide using pelletized zeolite adsorbent with amine impregration, Korean J. Chem. Eng. Res., 50(2), 244-250. https://doi.org/10.9713/kcer.2012.50.2.244
  6. Huston, N. D., Speakman, S. A., Payzant, E. A., 2004, Structural effects on the high-temperature absorption of $CO_{2}$ on a synthetic hydrotalcite, Chem. Mater., 16, 4135-4143. https://doi.org/10.1021/cm040060u
  7. IPCC, 2001, Climate Change 2001: The scientific intergovernmental panel on climate change, Cambridge University Press, Cambridge, UK.
  8. Jahav, P. D., Chatti, R. V., Biniwale, R. B., Labhsetwar, N. K., Devotta, S., Rayalu, S. S., 2007, Monoethanol amine modified zeolite 13X for $CO_{2}$ adsorption at different temperatures, Energy & Fuels, 21, 3555-3559. https://doi.org/10.1021/ef070038y
  9. Jang, D. I., Jo, K. S., Park, S. J., 2009, Influence of amine surface treatment on carbon dioxide adsorption behaviors of activated carbon nanotubes, J. Ind. and Eng. Chem., 20(6), 658-662.
  10. K.E.E.I, 2010, http://www.gihoo.or.kr/portal/01_General _ Info/04_ST01_02.jsp.
  11. Kwon, J, S., Choi, S. S., Kim, S. I., Yeun, M. S., 2010, Abatement the newest technology trend of carbon dioxide capture storage & sulfur hexafluoride, Korea Environmental industry & Technology Institute, 68-70.
  12. Lee, D. H., Kam, S. K., Lee, S. W., Lee, M. K., 2010, Adsorption characteristics of activated carbons according to impregnation concentrations and inlet $CO_{2}$ gas concentrations, J. Environ. Sci. Int., 26(12), 1403-1407.
  13. Lu, C., Su, F., Hsu, S. C., Chen, W., Bai, H., Hwang, J. F., Lee, H. H., 2009, Thermodynamics and regeneration of $CO_{2}$ adsorption on mesoporous spherical-silica particles, Fuel. Process. Tech., 90(12), 1543-1549. https://doi.org/10.1016/j.fuproc.2009.08.002
  14. Plaza, M. G., Pevida, C., Arenillas, A., Rubiera, F., Pis, J. J., 2007, $CO_{2}$ capture by adsorption with nitrogen enriched carbons, Fuel, 86, 2204-2212. https://doi.org/10.1016/j.fuel.2007.06.001
  15. U.S.EIA, 2010, http://www.eia.gov/cfapps/ipdbproject/.
  16. Wang, X. P., Jun, J. J., Cheng, J., Hao, Z. P., Xu, Z. P., 2008, High-temperature adsorption of carbon dioxide on mixed oxides derived from hydrotalcite-like compounds, Environ. Sci. Technol., 42, 614-618. https://doi.org/10.1021/es072085a
  17. Xu, X., Song, C., Andresen, J. M., Miller, B. G., Scaroni, A. W., 2003, Preparation and characterization of novel $CO_{2}$ "molecular basket" adsorbents based on polymer-modified mesoporous molecular sieve MCM41, Micropor. Mesopo. Mat., 62, 29-45. https://doi.org/10.1016/S1387-1811(03)00388-3