DOI QR코드

DOI QR Code

Effect of Diluted H2SO4 and NaOH Treatment on Chemical Composition of Larch and Yellow Poplar

황산 및 수산화나트륨처리가 낙엽송과 백합나무의 주요 화학조성에 미치는 영향

  • Lee, Soo-Min (Division of Wood Chemistry & Microbiology, Department of Forest Products, Korea Forest Research Institute) ;
  • Lee, A-Ram (Division of Wood Chemistry & Microbiology, Department of Forest Products, Korea Forest Research Institute) ;
  • Ahn, Byoung Jun (Division of Wood Chemistry & Microbiology, Department of Forest Products, Korea Forest Research Institute) ;
  • Kim, Yong Sik (Division of Wood Chemistry & Microbiology, Department of Forest Products, Korea Forest Research Institute) ;
  • Yang, In (Department of Wood and Paper Science, College of Agriculture, Life & Environments Sciences, Chungbuk National University) ;
  • Cho, Sung Taig (Division of Wood Chemistry & Microbiology, Department of Forest Products, Korea Forest Research Institute)
  • 이수민 (국립산림과학원 임산공학부 화학미생물과) ;
  • 이아람 (국립산림과학원 임산공학부 화학미생물과) ;
  • 안병준 (국립산림과학원 임산공학부 화학미생물과) ;
  • 김용식 (국립산림과학원 임산공학부 화학미생물과) ;
  • 양인 (충북대학교 농업생명환경대학 목재종이과학과) ;
  • 조성택 (국립산림과학원 임산공학부 화학미생물과)
  • Received : 2013.05.20
  • Accepted : 2013.07.16
  • Published : 2013.07.25

Abstract

In this study, both mild acid and alkali treatments with 1.0 wt% and 2.0 wt% of $H_2SO_4$ and NaOH solution were applied to evaluate the effects on chemical compositions of wood biomass. Yellow poplar (Liriodendron tulipifera L.) and larch (Larix kaempferi C.) were chosen due to major species planted in Korea. Chemical treatments of biomass were carried out by being soaked in either acid or alkali solution with 1:20 ratio for 72 hours at ambient temperature. Afterward, lignin, 5 major reduced sugars, ash contents and elemental composition were determined. To statistically understand the relationship between samples and chemical treatments, the Tukey test, simple linear regression model and ANOVA analysis were introduced using a statistical software R. As results from both wet chemistry and statistical analysis, yellow poplar was more affected on the lignin and xylose contents by acid treatments under these experimental conditions. Meanwhile, larch was more affected on the composition of galactose and lignin by alkali treatments. A series of results in this study would show that equivalent chemical treatment makes a change the chemical composition of each species.

본 연구에서는 산 및 알칼리 처리가 목질계 바이오매스의 주요 화학조성 변화에 미치는 영향을 확인하기 위해 $H_2SO_4$와 NaOH를 각각 1.0 wt%와 2.0 wt% 수용액으로 제조한 후 국내 주요 수종인 백합나무와 낙엽송에 상온에서 72시간 침지 처리하였다. 리그닌, 주요 구성당, 원소분석 등 화학적 특성 분석을 수행하고 그 결과를 통계프로그램을 이용하여 분석하였다. 그 결과 동일한 화학적 처리에도 수종에 따라 95% 유의수준에서 유의한 결과를 확인하였다. 백합나무는 산 처리에 민감한 변화를 보이는 반면에 낙엽송에서는 알칼리 처리에서 유의한 결과를 얻을 수 있었다. 두 수종 모두에서 glucose보다는 헤미셀룰로오스에 미치는 영향이 큰 것으로 분석되었으며, 바이오매스의 에너지량과 밀접한 관계가 있는 H/C와 O/C 비율을 이용한 Van Krevelen 다이어그램에서는 산 또는 알칼리 처리 종류에 관계없이 수종에 따라 상반된 결과를 확인하였다. 이러한 결과는 바이오매스 종류에 따라 각기 다른 최적화된 바이오에너지 생산 공정이 필요함을 의미하며, 목재펠릿과 같은 고형 바이오연료 생산의 경우 바이오매스 내 헤미셀룰로오스 및 리그닌 함량 변화로 인하여 내구성에 영향을 미칠 것으로 분석되었다.

Keywords

References

  1. 조남석, 이종윤, 안원영. 1982. 낙엽송 추출성분 이용에 관한 기초연구. 목재공학 10(2): 12-21.
  2. 국립산림과학원. 2009. 목재펠릿 품질규격. 국립산림과학원 고시 제2009-2호.
  3. Wickham, H. 2009. ggplot2: elegant graphics for data analysis. Springer, Newyork.
  4. Vassilev, S. V., D. Baxter, L. K. Andersen, C. G. Vassileva, and T. J. Morgan. 2012. An overview of the organic and inorganic phase composition of biomass. Fuel 94(0): 1-33. https://doi.org/10.1016/j.fuel.2011.09.030
  5. Vassilev, S. V., D. Baxter, L. K. Andersen, and C. G. Vassileva. 2010. An overview of the chemical composition of biomass. Fuel 89(5): 913-933. https://doi.org/10.1016/j.fuel.2009.10.022
  6. van Dam, J. E. G., M. J. A. van den Oever, W. Teunissen, E. R. P. Keijsers, and A. G. Peralta. 2004. Process for production of high density/ high performance binderless boards from whole coconut husk: Part 1: Lignin as intrinsic thermosetting binder resin. Industrial Crops and Products 19(3): 207-216.
  7. Shin, S.-J., J.-M. Park, D. H. Cho, Y. H. Kim, and N.-S. Cho. 2009. Acid Hydrolysis Characteristics of Yellow Poplar for High Concentration of Monosaccharides Production. Mokchae Konghak 37(6): 578-584.
  8. Ryu, J.-Y., C.-Y. Kang, E.-S. Lee, J.-W. Seo, H.-J. Lee, and H. Park. 2010. The Study on the Characteristics of Pellets Manufactured with Morphologically Different Domestic Larix Kaemferi Carr Sawdust. Mokchae Konghak 38(1): 49-55. https://doi.org/10.5658/WOOD.2010.38.1.49
  9. Rabemanolontsoa, H., S. Ayada, and S. Saka. 2011. Quantitativemethod applicable for various biomass species to determine their chemical composition. Biomass and Bioenergy 35(11): 4630-4635. https://doi.org/10.1016/j.biombioe.2011.09.014
  10. Lee, S. M., D. H. Choi, S. T. Cho, T. H. Nam, G.-S. Han, and I. Yang. 2011. Effects of Various Factors on the Durability of Pellets Fabricated with Larix kaempferi C. and Liriodendron tulipifera L. Sawdust. Mokchae Konghak 39(3): 258-268. https://doi.org/10.5658/WOOD.2011.39.3.258
  11. Lee, E.-S., C.-Y. Kang, J.-W. Seo, and H. Park. 2011. A Study on Productivity and Quality Characteristics of Wood Pellets by Larix Kaemferi Carr Sawdust with Adding Vegetable Oil and Ozonized Vegetable Oil. J. Korean Wood Sci. & Tech. 39(4): 359-369. https://doi.org/10.5658/WOOD.2011.39.4.359
  12. Kim, H.-Y., J.-W. Lee, T. W. Jeffries, K.-S. Gwak, and I.-G. Choi. 2009. Effect of Oxalic Acid Pretreatment on Yellow Poplar(Liriodendron tulipifera) for Ethanol Production. Mokchae Konghak 37(4): 397-405.
  13. Kallis, K. X., G. A. Pellegrini Susini, and J. E. Oakey. 2013. A comparison between Miscanthus and bioethanol waste pellets and their performance in a downdraft gasifier. Applied Energy 101(0): 333-340. https://doi.org/10.1016/j.apenergy.2012.01.037
  14. Kaliyan, N. and R. Vance Morey. 2009. Factors affecting strength and durability of densified biomass products. Biomass and Bioenergy 33(3): 33 7-359. https://doi.org/10.1016/j.biombioe.2008.08.005
  15. Kaliyan, N. and R. V. Morey. 2010. Densification characteristics of corn cobs. Fuel Processing Technology 91(5): 559-565. https://doi.org/10.1016/j.fuproc.2010.01.001
  16. Hothorn, T., F. Bretz, and P. Westfall. 2008. Simultaneous Inference in General Parametic Models. Biometrical Journal 50(3): 346-363. https://doi.org/10.1002/bimj.200810425
  17. Gilbert, P., C. Ryu, V. Sharifi, and J. Swithenbank. 2009. Effect of process parameters on pelletisation of herbaceous crops. Fuel 88(8): 1491-1497. https://doi.org/10.1016/j.fuel.2009.03.015
  18. Gil, M. V., P. Oulego, M. D. Casal, C. Pevida, J. J. Pis, and F. Rubiera. 2010. Mechanical durability and combustion characteristics of pellets from biomass blends. Bioresource Technology 101(22): 8859-8867. https://doi.org/10.1016/j.biortech.2010.06.062
  19. Fasina, O. O. 2008. Physical properties of peanut hull pellets. Bioresource Technology 99(5): 1259-1266. https://doi.org/10.1016/j.biortech.2007.02.041
  20. EN14918. 2009. Solid Biofuels : Determination of calorific value.
  21. Berghel, J., et al. 2013. The effects of kraft lignin additives on wood fuel pellet quality, energy use and shelf life. Fuel Processing Technology 112(0): 64-69. https://doi.org/10.1016/j.fuproc.2013.02.011
  22. Abdollahi, M. R., V. Ravindran, T. J. Wester, G. Ravindran and D. V. Thomas. 2012. Effect of improved pellet quality from the addition of a pellet binder, and/or moisture to a wheat-based diet conditioned at two different temperatures on performance, apparent metabolisable energy and ileal digestibility of starch and nitrogen in broilers. Animal Feed Science and Technology 175(3-4): 150-157. https://doi.org/10.1016/j.anifeedsci.2012.05.001

Cited by

  1. Mulberry Paper-Based Supercapacitor Exhibiting High Mechanical and Chemical Toughness for Large-Scale Energy Storage Applications vol.8, pp.21, 2018, https://doi.org/10.1002/aenm.201800064