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Abstract
Consider a p-variate(p ≥ 3) normal distribution with mean θθθ and covariance matrix Σ = σ2III p for any

unknown scalar σ2. In this paper we improve the James-Stein estimator of θθθ in cases of shrinking toward some
vectors using the Stein variance estimator. It is also shown that this domination does not hold for the positive part
versions of these estimators.
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1. Introduction

There has been considerable interest in the problem of simultaneous estimation of the means of three
or more independent normal populations with common unknown variance. The “usual” estimator
in this problem is the maximum likelihood estimator, however, as demonstrated in James and Stein
(1961) and Lindley (1962), these estimators are dominated by a shrinkage estimator that incorporates
the minimum risk equivariant estimator of the common variance. Baranchik (1970), Strawderman
(1973), Berry (1994) and Maruyama (1996) have demonstrated (amongst others) that there is a large
class of shrinkage estimators that dominate the usual estimator. Much work in this area is concerned
with the domination of the usual estimator even though this estimator is known to be dominated, e.g.,
by the traditional James-Stein estimator with some shrinkage points.

In this same context, Stein (1964) provides a variance estimator that dominates the minimum
risk equivariant variance estimator. This improved variance estimator uses information contained in
the usual estimator of the mean vector to provide improvement. George (1990) suggested that it
might be possible to use the improved variance estimator to improve the James-Stein estimator with
some shrinkage points. Kim et al. (1995) investigated the behavior of risks of Stein-type estimators
that shrink the usual estimator toward the mean of observations. Maruyama (1996) considered a
class of generalized Bayes estimators dominating the James-Stein estimator. Baek and Han (2004)
produced a sequence of smooth estimators dominating the Lindley-type estimator, Park and Baek
(2011) considered the generalized Bayes estimators dominating the Lindley-type estimator.

This paper improves the James-Stein estimator with some shrinkage points. In Section 2 the
James-Stein estimator shrinking toward µµµ is improved and the Lindley-type estimator is improved in
Section 3. It is shown that these dominations do not hold comparing the positive part versions of these
estimators and some concluding remarks are given in Section 4.
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2. Improving the James-Stein Estimator in Case of Shrinking toward µµµ

This section will demonstrate that the estimator that incorporates the improved variance estimator
dominates the traditional James-Stein estimator shrinking toward µµµ where µµµ = (µ1, µ2, . . . , µp)′ is a
constant vector.

Let XXX and S be independently distributed with XXX ∼ Np(θθθ, σ2III) and S/σ2 ∼ χ2
n, where p ≥ 3.

Let T = ||XXX − µµµ||2 and let F = T/S . Then T/σ2 ∼ χ2(λ) independently of S , where χ2(λ) denotes
a noncentral chi-square distribution with noncentrality parameter λ = ||θθθ − µµµ||2/σ2. Our interest is to
estimate θθθ with respect to the scaled squared error loss function L((θθθ, σ2), δ) = (||δ−θθθ||2)/σ2. Consider
estimators of the form

δ(XXX) = µµµ + g(F)(XXX − µµµ) = µµµ +
(
1 − r(F)

F

)
(XXX − µµµ).

The application of Baranchik’s method (1970) shows that the estimators of this form are minimax,
i.e., they dominate XXX, provided r(F) is monotone, nondecreasing, and 0 ≤ r(F) ≤ 2(p − 2)/(n + 2).
The risk function of δ(XXX) depends on (θθθ, σ2) only through λ = ||θθθ − µµµ||2/σ2, hence, without loss of
generality let σ2 = 1.

Consider the estimators δ1(XXX) = µµµ + g1(F)(XXX − µµµ) and δ2(XXX) = µµµ + g2(F)(XXX − µµµ) determined by

r1(F) =
p − 2
n + 2

and

r2(F) =


p − 2
n + 2

, if F ≥ p
n + 2

,

p − 2
n + p + 2

(1 + F), if F <
p

n + 2
.

Both of these estimators satisfy Baranchik’s conditions and dominate XXX. Notice that δ1(XXX) is the
James-Stein estimator with shrinking towardµµµ, whereσ2 is estimated by the minimum risk equivariant
estimator S/(n + 2). The other estimator, δ2(XXX), is obtained from δ1(XXX) by replacing S/(n + 2) by the
improved variance estimator of Stein (1964).

Let the difference in risk for these estimators

∆ = R(λ, δ1(XXX)) − R(λ, δ2(XXX)).

Then

∆ = E
[
2(XXX − θθθ)′

(
r2(F) − r1(F)

F

)
(XXX − µµµ)

]
+ E

 r2
1(F) − r2

2(F)
F2

 ||XXX − µµµ||2 .
Subject to mild conditions on the function h, it is shown in Stein (1981) that

E
[
(XXX − θθθ)′h(XXX)

]
= E [∇ • h(XXX)] . (2.1)

Let 111[ • ] denote the indicator function for the expression in square brackets. In the current context

h(XXX) =
(

r2(F) − r1(F)
F

)
(XXX − µµµ)

=

(
p − 2

n + p + 2

) (
1 − p

n + 2
S

||XXX − µµµ||2

)
(XXX − µµµ) 111

[
F <

p
n + 2

]
.
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Then using the similar method of Berry (1994)

∇ • h(XXX) =
p∑

i=1

∂

∂xi
hi(xxx) =

(
p(p − 2)
n + p + 2

) {
1 − p − 2

n + 2

(
1
F

)}
111
[
F <

p
n + 2

]
for fixed S .

Applying this expectation identity conditionally on S yields

∆ = E
[(

2p(p − 2)
n + p + 2

) {
1 − p − 2

n + 2

(S
T

)}
111
[T
S
<

p
n + 2

]]
+ E

[
(p − 2)2

(n + p + 2)2

{
p(p + 2n + 4)

(n + 2)2

(
S 2

T

)
− 2S − T

}
111
[T
S
<

p
n + 2

]]
.

Let K ∼ Poisson(λ/2) independently of S such that the conditional distribution of T , given S and
K, is central chi-square with p + 2K degrees of freedom, then ∆ = E[E[∆k]], where ∆k is the risk
difference conditional on K = k. If Y ∼ χ2

ν , then E[Yh(Y)] = νE[h(Y∗)], where Y∗ ∼ χ2
ν+2. Applying

this chi-square identity to each of S and T , while conditioning on the other variable yields(
(n + p + 2)2

(p − 2)2

)
∆k =

(
2p(n + p + 2)

p − 2

)
E

[
111
[T
S
<

p
n + 2

]]
−

(
2p(n + p + 2)

n + 2

)
E

[(S
T

)
111
[T
S
<

p
n + 2

]]
+

(
np(p + 2n + 4)

(n + 2)2

)
E

[(
S ∗

T

)
111
[ T
S ∗ <

p
n + 2

]]
− 2nE

[
111
[ T
S ∗ <

p
n + 2

]]
− (p + 2k)E

[
111
[
T ∗

S
<

p
n + 2

]]
,

where S ∗ ∼ χ2
(n+2) and T ∗ ∼ χ2

(p+2k+2).
Let Gν1

ν2 denote the distribution of a ratio of two independent chi-square random variables with ν1
and ν2 degrees of freedom, respectively. The corresponding cumulative distribution function is given
by

P
[
Gν1
ν2
≤ c

]
= I c

(1+c)

(
ν1

2
,
ν2

2

)
, (2.2)

where Ir(a, b) denotes the incomplete beta ratio function, i.e., the probability that a beta random
variable with parameters a and b does not exceed r. If Y ∼ Gν1

ν2 , then

E
[
h(Y)

Y

]
=

(
ν2

ν1 − 2

)
E

[
h(Y∗)

]
, (2.3)

where Y∗ ∼ Gν1−2
ν2+2. Two applications of this expectation identity yield(

(n + p + 2)2

(p − 2)2

)
∆k =

(
2p(n + p + 2)

p − 2

)
I(a, b) −

(
2np(n + p + 2)

(n + 2)(p + 2k − 2)

)
I(a − 1, b + 1)

+

(
np(p + 2n + 4)

(n + 2)(p + 2k − 2)

)
I(a − 1, b + 2) − 2nI(a, b + 1) − (p + 2k)I(a + 1, b),
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where

I(a, b) = Ir(a, b), for r =
p

n + p + 2
, a =

p + 2k
2

, b =
n
2
.

Application of the incomplete beta ratio function identities (Abramowitz and Stegun, 1964)

(a + b)I(a, b) = aI(a + 1, b) + bI(a, b + 1) (2.4)

and

I(a, b) = rI(a − 1, b) + (1 − r)I(a, b − 1) (2.5)

along with some algebra yields(
(n + p + 2)2(n + 2)(p + 2k − 2)

2(p − 2)

)
∆k

=
[
n(n + p + 2)(k − 1)(p − 2)

]
I(a, b + 1) −

[
2k2(p − 2)(n + 2)

+k
{
n2(p − 6) + n(p2 − 10p − 8) + 8 − 20p

}
− (p − 2)(n + p)(3n + p + 6)

]
I(a, b).

Notice that the coefficient of I(a, b + 1) in the preceding expression is negative for k = 0, zero for
k = 1, and positive for k ≥ 2. It can be verified that(

(p + 2k + n)(n + 2)
n(n + p + 2)

)
I(a, b) < I(a, b + 1) <

(
p + 2k + n

n

)
I(a, b).

Insertion of the lower bound, for k ≥ 1, yields(
(n + p + 2)2(n + 2)(p + 2k − 2)

2(p − 2)

)
∆k

≥
[
k
(
4n2 + 8np + 8n + 12p + 2p2

)
+ (2n + p + 4)(p − 2)(n + p)

]
I(a, b) > 0,

for all p ≥ 3 and n ≥ 1. Insertion of the upper bound, when k = 0, yields(
(n + p + 2)2(n + 2)(p − 2)

2(p − 2)

)
∆0 > 2(p − 2)(n + p)(n + 2)I(a, b) > 0,

for all p ≥ 3 and n ≥ 1. Hence, ∆k > 0 for all k = 0, 1, . . . , for all p ≥ 3 and for all n ≥ 1. Hence
∆ > 0 for all p ≥ 3 and for all n ≥ 1, since ∆ = E[E[∆k]]. Therefore, we can obtain the main theorem
of this section from above results.

Theorem 1. δ2(XXX) dominates δ1(XXX) for all p ≥ 3 and n ≥ 1.

In case µµµ = 000, the result of Theorem 1 coincides with that of Berry (1994).

3. Improving the Lindley-Type Estimator

In this section, it is considered the shrinkage estimator of the form that shrinks XXX toward X̄111, where
X̄ = (1/p)

∑p
i=1 Xi and 111 is the column vector of 1’s.
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Let XXX and S be independently distributed with XXX ∼ Np(θθθ, σ2III) and S/σ2 ∼ χ2
n, where p ≥

4. Let T = ||XXX − X̄ 111||2 and let F = T/S . Then T/σ2 ∼ χ2(λ) independently of S , where χ2(λ)
denotes a noncentral chi-square distribution with noncentrality parameter λ = ||θθθ − θ̄111||2/σ2 with
θ̄ = (1/p)

∑p
i=1 θi. Our interest is to estimate θθθ with respect to the scaled squared error loss function

L((θθθ, σ2), δ) = (||δ − θθθ||2)/σ2. Now consider the estimators of the form

δ∗(XXX) = X̄ 111 + g(F)
(
XXX − X̄111

)
= X̄111 +

(
1 − r∗(F)

F

) (
XXX − X̄111

)
. (3.1)

The application of Baranchik’s method (1970) shows that estimators of this form are minimax, i.e.,
they dominate XXX, provided r(F) is monotone, nondecreasing, and 0 ≤ r(F) ≤ 2(p − 3)/(n + 2). The
risk function of δ(XXX) depends on (θθθ, σ2) only through λ = ||θθθ − θ̄111||2/σ2, hence, without loss of
generality let σ2 = 1.

Consider the estimators

δ∗1(XXX) = X̄111 + g1(F)
(
XXX − X̄111

)
= X̄111 +

(
1 − r∗1(F)

F

) (
XXX − X̄111

)
and

δ∗2(XXX) = X̄111 + g2(F)
(
XXX − X̄111

)
= X̄111 +

(
1 − r∗2(F)

F

) (
XXX − X̄111

)
determined by

r∗1(F) =
p − 3
n + 2

and

r∗2(F) =


p − 3
n + 2

, if F ≥ p − 1
n + 2

,

p − 3
n + p + 1

(1 + F), if F <
p − 1
n + 2

.

Notice that δ∗1(XXX) is the Lindley-type estimator, whereσ2 is estimated by the minimum risk equivariant
estimator S/(n + 2). The other estimator, δ∗2(XXX) is obtained from δ∗1(XXX) by replacing S/(n + 2) by the
improved variance estimator of Stein (1964).

The difference in risk for these estimators is given by

∆ = E
[
2(XXX − θθθ)′

(
r∗2(F) − r∗1(F)

F

) (
XXX − X̄111

)]
+ E

 r∗ 2
1 (F) − r∗ 2

2 (F)
F2

 ∣∣∣∣∣∣XXX − X̄111
∣∣∣∣∣∣2

and in the expectation identity (2.1)

h(XXX) =
(

r∗2(F) − r∗1(F)
F

) (
XXX − X̄111

)
=

(
p − 3

n + p + 1

) 1 − p − 1
n + 2

S∣∣∣∣∣∣XXX − X̄111
∣∣∣∣∣∣2

 (XXX − X̄111
)
111
[
F <

p − 1
n + 2

]
.



334 Ki Won Lee, Hoh Yoo Baek

Hence it can be proved the following Lemma.

Lemma 1. For fixed S ,

∇ • h(XXX) =
p∑

i=1

∂

∂xi
hi(xxx) =

(p − 1)(p − 3)
n + p + 1

{
1 − p − 3

n + 2

(
1
F

)}
111
[
F <

p − 1
n + 2

]
.

Proof: Since

∂

∂xi
hi(xxx) =

(
p − 3

n + p + 1

) {(
1 − 1

p

)
− p − 1

n + 2

(
(1 − 1/p) ||xxx − x̄111||2 − 2(xi − x̄)2

||xxx − x̄111||4

)
S
}

111
[
F <

p − 1
n + 2

]
,

∇ • h(XXX) =
p∑

i=1

∂

∂xi
hi(xxx)

=
p − 3

n + p + 1

p
(
1 − 1

p

)
− p − 1

n + 2

(1 − 1
p

)
pS∣∣∣∣∣∣XXX − X̄111

∣∣∣∣∣∣2 − 2S∣∣∣∣∣∣XXX − X̄111
∣∣∣∣∣∣2


111

[
F <

p − 1
n + 2

]

=
(p − 1)(p − 3)

n + p + 1

{
1 − p − 3

n + 2

(
1
F

)}
111
[
F <

p − 1
n + 2

]
.

Applying this expectation identity (2.1) conditionally on S yields

∆ = E
[(

2(p − 1)(p − 3)
n + p + 1

) {
1 − p − 3

n + 2

(
1
F

)}
111
[
F <

p − 1
n + 2

]]
+ E

[
(p − 3)2

(n + p + 1)2

{
(p − 1)(p + 2n + 3)

(n + 2)2

(
1

F2

)
− 2

F
− 1

} ∣∣∣∣∣∣XXX − X̄111
∣∣∣∣∣∣2 111

[
F <

p − 1
n + 2

]]
= E

[(
2(p − 1)(p − 3)

n + p + 1

) {
1 − p − 3

n + 2

(S
T

)}
111
[
T
S
<

p − 1
n + 2

]]
+ E

[
(p − 3)2

(n + p + 1)2

{
(p − 1)(p + 2n + 3)

(n + 2)2

(
S 2

T

)
− 2S − T

}
111
[
T
S
<

p − 1
n + 2

]]
.

Let K ∼ Poisson(λ/2) independently of S such that the conditional distribution of T , given S and
K, is central chi-square with p + 2K − 1 degrees of freedom, then ∆ = E[E[∆k]], where ∆k is the
risk difference conditional on K = k. If Y ∼ χ2

ν , then E[Yh(Y)] = νE[h(Y∗)], where Y∗ ∼ χ2
ν+2. The

application of this chi-square identity to each of S and T while conditioning on the other variable
yields(

(n + p + 1)2

(p − 3)2

)
∆k

=

(
2(p − 1)(n + p + 1)

p − 3

)
E

[
111
[
T
S
<

p − 1
n + 2

]]
−

(
2(p − 1)(n + p + 1)

n + 2

)
E

[(S
T

)
111
[
T
S
<

p − 1
n + 2

]]
+

(
n(p − 1)(p + 2n + 3)

(n + 2)2

)
E

[(
S ∗

T

)
111
[

T
S ∗

<
p − 1
n + 2

]]
− 2nE

[
111
[

T
S ∗

<
p − 1
n + 2

]]
− (p + 2k − 1)E

[
111
[
T ∗

S
<

p − 1
n + 2

]]
,
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where S ∗ ∼ χ2
(n+2) and T ∗ ∼ χ2

(p+2k+1).
Applying (2.2) and (2.3) to this identity yields(

(n + p + 1)2

(p − 3)2

)
∆k =

(
2(p − 1)(n + p + 1)

p − 3

)
I(a, b) −

(
2n(p − 1)(n + p + 1)
(n + 2)(p + 2k − 3)

)
I(a − 1, b + 1)

+

(
n(p − 1)(p + 2n + 3)
(n + 2)(p + 2k − 3)

)
I(a − 1, b + 2) − 2nI(a, b + 1) − (p + 2k − 1)I(a + 1, b),

where

I(a, b) = Ir(a, b), for r =
p − 1

n + p + 1
, a =

p + 2k − 1
2

, b =
n
2
.

The application of the incomplete beta ratio function identities (2.4) and (2.5) along with some algebra
yields (

(n + p + 1)2(n + 2)(p + 2k − 3)
2(p − 3)

)
∆k

=
[
n(n + p + 1)(k − 1)(p − 3)

]
I(a, b + 1)

−
[
2k2(p − 3)(n + 2) + k

{
n2(p − 7) + n(p2 − 12p + 3) + 28 − 20p

}
− (p − 3)(n + p − 1)(3n + p + 5)

]
I(a, b).

Notice that the coefficient of I(a, b + 1) in the preceding expression is negative for k = 0, zero for
k = 1, and positive for k ≥ 2. It can be verified that(

(p + 2k + n − 1)(n + 2)
n(n + p + 1)

)
I(a, b) < I(a, b + 1) <

(
p + 2k + n − 1

n

)
I(a, b).

Insertion of the lower bound, for k ≥ 1, yields(
(n + p + 1)2(n + 2)(p + 2k − 3)

2(p − 3)

)
∆k

≥ [k
{
4n2 + 8n(p − 1) + 8n + 12(p − 1) + 2(p − 1)2

}
+ (2n + p + 3)(p − 3)(n + p − 1)]I(a, b) > 0,

for all p ≥ 4 and n ≥ 1. Insertion of the upper bound, when k = 0, yields(
(n + p + 1)2(n + 2)(p − 3)

2(p − 3)

)
∆0 > 2(p − 3)(n + p − 1)(n + 2)I(a, b) > 0,

for all p ≥ 4 and n ≥ 1. Hence, ∆k > 0 for all k = 0, 1, . . . , for all p ≥ 4 and for all n ≥ 1. And since
∆ = E[E[∆k]], ∆ > 0 for all p ≥ 4 and for all n ≥ 1. Therefore, we can obtain the main theorem of
this section from above results. �

Theorem 2. δ∗2(XXX) dominates δ∗1(XXX) for all p ≥ 4 and n ≥ 1.
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4. Concluding Remarks

Graphing the positive part versions of the multipliers g+1 (F) and g+2 (F) it is readily seen that δ+2
does not dominate δ+1 . For F < (p − 2)/(n + 4) and for F > p/(n + 2), δ+1 = δ+2 . For θθθ = 000 and
(p − 2)/(n + 4) < F < p/(n + 2), the risk difference ∆ = R(000, δ+1 ) − R(000, δ+2 ) < 0. Thus δ+2 does not
dominate δ+1 . Similarly, for F < (p − 3)/(n + 4) and for F > (p − 1)/(n + 2), δ∗+1 = δ

∗+
2 . For θθθ = θ̄111

and (p − 3)/(n + 4) < F < (p − 1)/(n + 2), ∆ = R(θ̄111, δ∗+1 ) − R(θ̄111, δ∗+2 ) < 0, i.e., the contribution to
the risk difference is in favor of δ∗+1 , thus δ∗+2 does not dominate δ∗+1 .

We can represent X̄111 as (1/p)JXXX, where J is the p × p matrix all entries are 1’s and make the
general form of the estimator in (3.1) replacing X̄111 by PVXXX, where PV is the p × p projection matrix
(Kim et al, 2002; Lehmann and Casella, 1999). The estimators in Berry (1994) and (3.1) are the cases
of PV = Op×p and PV = (1/p)J, respectively. It is left to further research to determine the estimators
shrinking toward PVXXX with a more general projection matrix PV .
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