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Abstract

Bayesian and empirical Bayesian methods have become quite popular in the theory and practice of statistics.
However, the objective is to often produce an ensemble of parameter estimates as well as to produce the histogram
of the estimates. For example, in insurance pricing, the accurate point estimates of risk for each group is necessary
and also proper dispersion estimation should be considered. Well-known Bayes estimates (which is the posterior
means under quadratic loss) are underdispersed as an estimate of the histogram of parameters. The adjustment of
Bayes estimates to correct this problem is known as constrained Bayes estimators, which are matching the first
two empirical moments. In this paper, we propose a way to apply the constrained Bayes estimators in insurance
pricing, which is required to estimate accurately both location and dispersion. Also, the benefit of the constrained
Bayes estimates will be discussed by analyzing real insurance accident data.
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1. Introduction

Bayesian techniques are widely used for the simultaneous estimation of several parameters in com-
pound decision problems. Under the quadratic loss, Bayes estimates are the posterior means of the
parameters of interest which is minimizing the squared error loss focusing on the precision of esti-
mation. However, the goal is to often produce an ensemble of parameter estimates as well as ensure
the histogram of estimates somewhat close to the histogram of the population parameters. The twin
objectives mentioned the above are usually conflicting in the sense that one is often achieved at the
expenses of the other.

The posterior means of the parameters are optimal estimates under quadratic loss, but it can be
shown that the histogram of the posterior means of parameters is underdispersed as an estimate of the
histogram of parameters. Accordingly, the histogram of posterior means is clearly inappropriate to
estimate the parameter histogram. There is a need to find a set of suboptimal estimates to compromise
between the two criteria. Louis (1984) proposed a constrained Bayes method that matches the first
two empirical moments of Bayes estimates of the normal means with minimizing the squared distance
of the parameters and estimates subject to these constraints. After that Ghosh (1992) generalized the
Louis’ result for any arbitrary distribution and not necessarily normal distribution.
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Consider a situation where the data are denoted by x and 6 = (6,,..., 6,)7 is the parameter of
interest. The basic idea is to find an estimate of parameter 6 = (6, . ..,06,,)" that minimizes
E{i(@i - ti)2|x}, (1.1)
i=1
within the class of all estimates ¢(x) = ¢ = (¢, ..., t,)" of 8 that satisfy these two conditions
(1) E(flx) = Z 1:(x) = (x), (1.2)

m

Q) E {2(9" - é)Z‘x} = 3 (@) - i) (1.3)
i=1

i=1

Let 6% denote Bayes estimate of  under any quadratic loss, it is easy to to see that Bayes estimate
satisfies (1.2); however, regarding to the (1.3) can be calculated as:

m m
Derco - 9B(X)}2 <E {Z (6 - 9)2 ‘X} . (1.4)
i=1 i=1

This clearly shows the limitation of usual Bayes estimates to estimate the true variation of param-
eter 6 and the reason why constrained Bayes estimates should be considered in the case of the twin
objectives.

In Section 2, the constrained Bayes and constrained empirical Bayes estimates are described in
detail. The insurance pricing application with described estimates is discussed in Section 3. After that
the benefit of the those estimates are derived with numerical results in Section 4 using real insurance
data.

2. Constrained and Constrained Empirical Bayes Estimate
2.1. Constrained Bayes estimate

Constrained Bayes estimate(CB) of parameter 6 can be found which minimizes (1.1) subject to (1.2)
and (1.3) and the main result is proved in Ghosh (1992). For stating the theorem require a few notions
and the expected value of second moment can be denoted as following. To see this we define I,, as

the identity matrix of order m, 1,, as the m-component column vector with each element equal to 1
and J,, = 1,1},

m*

-t
{(zm )] ) V(0|X>+E(0|X>E<0|X>T}}
A

i=1
m

= (v (0-1,0X))+ Y { [P0 - ") . @2.1)
i=1
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The second term of (2.1) is the squared distance of the Bayes estimate and clearly shows the
under-dispersion of the Bayes estimate. Let the first term of (2.1) be H;(x), and the second term be
Hy(x), then the CB estimate §“%(x) = (68(x), ..., 658(x))" can be stated as follows.

1
_ H 3
68 (x) = abP(x) + (1 - a)@®(x), i=1,...,m, a=a(x)= [1 + ﬂ] . (2.2)
H(x)
The Bayes estimate for the exponential family can be derived as follows. Suppose that X, ..., X,

are m independent random variables, where X; has the pdf given by

Jo.(x) = exp{ngix; —n(pp)}, i=1,....,m.

Each X; can be viewed as each having a pdf belonging to a one-parameter exponential family.
Assume the independent conjugate priors

8(¢:) = exp (véip — vip(¢)
for the ¢;’s. Then under the quadratic loss, the Bayes estimates of 6;’s are given by
67 (x) = E(0ilx) = E [/ (¢)lx] = (1 - B)x; + By, 2.3)

where B =v/(n + v).

Equation (2.2) appearance looks like convex combinations of the Bayes estimates and their av-
erage, but it is deceptive expressing because function a(x) exceeds 1. Ghosh and Kim (2002) have
extended the result when the parameters are vector-valued and can be stated similarly.

2.2. Constrained empirical Bayes estimate

When the Bayesian model is true, the Bayes estimators have the smallest Bayes risks. The CB estima-
tors cannot claim any risk improvement over the Bayes estimators. The same phenomenon is reflected
in the comparison of the empirical Bayes(EB) and the constrained empirical Bayes(CEB) estimators.
The CEB estimators are not designed to improve on the EB estimators by producing smaller MSE’s.
They are constructed to meet the twin objectives mentioned earlier more satisfactorily than the EB
estimators.

Louis (1984) proposed the CEB estimators in the original James-Stein framework. Ghosh (1992)
developed the CB estimators in a more general framework when the distribution was not necessarily
normal. In this section, for more clear understanding, we will discuss under the assumption of normal
distribution. Consider the usual normal model where X;|6; are independent N(6;,1),i = 1, ..., m while
6; are iid N(u, A). Then the CB estimator of 8 can be expressed as following by Equation (2.2).

9CB = al(1 - BYX + B,Ulm] + (1 —ap) [(1 — B)X + Bﬂ] 1,

=(-B) [aBX +(1- aB)le] + Bul,, (2.4)

where 1,, is an m-component column vector with each element equal to 1, X = m! X, a% =
1+1/{(1-B)S},and S = 37 (X; -X)?/(m - 1).

In an EB scenario, typically both x4 and A are unknown, and are estimated from the marginal
distribution of X = (X;,...,X,)7. Marginally, X ~ N(ul,,B 'I,). Hence, marginally, § ~
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B~'x%_,/(m - 1). We estimate u by X, and B by B = 1/S. The CEB estimator of 6 is then given
by
B (1 - B) [aEBX +(1 - aEB)le] + BX1,, (2.5)

where agp replaces B by Bin ap.

2.3. Estimation with ANOVA model

Insurance pricing focuses on the estimation for the risk of each group. The key idea to segment the
group is similar to the ANOVA model. By trying to minimize the within variance for each group
and also to maximize the between variance, each group risk could be evaluated properly. Higher
risk characteristics are segmentized with same group and lower risk characteristics are categorized
with same group for better segmentation in insurance pricing. Therefore, we will introduce the CB
estimators and the CEB estimators in the ANOVA model, which results expanded under different loss
functions by Ghosh ez al. (2008). In the next section, this model assumption and numerical analysis
will be implemented with auto insurance accident data to estimate the each group risk.

Consider the ANOVA model with ¥;; = 6; +e¢;;jand 6, =u+a; (i =1,...,m; j=1,...,k). Here

the @; and the ¢;; are mutually independent with a; " N(0,7%) and e; ; " N(0,0?). Alternatively, in a

Bayesian framework, these amounts to saying that Y;;|6; iid N@G;,0%),i=1,...,mand6; iid N(u, 7).
Minimal sufficiency consideration allows us to restrict to (X, . .., X, SSW), where X; = 1/k Z’;zl

Y;; = Y; and SSW = Y}, Z’;ZI(Y,-_,- — ¥;)?>. We may note that marginally X, ...,X,, and SSW are

mutually independent with X; ¢ N(u, 72 + a2 /k), i.e., N(u, 72/ (kB)), where B = (02 /k) /(02 [k +7%) =

0%/(0? + kt?) and SSW ~ 0'2)(2

m(k=1)*

From the results of the previous section, the CB estimator of = (6,,...,6,)" is given by
87 = aX)(1 - B) (X - X1,,) + {(1 - BX + Bu} 1, (2.6)
where X = (X,....X,)", X = m™! . Xi, and 1,, is an m-component column vector with each

element equal to 1. Also a*(X) = 1 + H(X)/H>(X), where H;(X) = (m — 1)(1 = B)o?/k and H,(X) =
(1-B)*Y" (X; — X)> = (1 - B)*>(SSB/k), (say). Then, on simplification,

2

2 ag
X)=1+ ——m——
a(X) (1 - B)MSB’

2.7
where MSB = SSB/(m — 1) and MSW = SSW/(k — 1).

At the result of Equation (2.7), by substitution of x4 by X, B by B and 0> by MSW. Here B =
{(m — 3)MSW}/{(m — 1)MSB}, the CEB estimator of 8 can be derived as

~CEB

0" = app(X) (1 - B) (X - X1,) + X1,,, (2.8)

where agp(X) = 1 + MSW/{(1 — B)MSB).
Based on the previous result, the numerical analysis implementation will be performed in the next
section to show the advantage of the CB estimators in the real business area.
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Table 1: Data structure (n denotes the sample size of each group and n = 1,000)

N Group
Small size car Medium size car Large size car SUV & Van type
1 yii y21 V31 Va1
yi2 y22 y32 ya2
n Yin Y2n V3n Yin

3. Data Analysis and Result

Insurance companies estimate premiums based on the paid loss amount caused by accidents using
various customer information; therefore, pricing is the historical trial for converging to the true risk.
For the proper and accurate estimation of the true risk, there exist three main issues. The first one
is what kind of customer information should be used for the explanatory factor to estimate the risk
(known as the rating factor). Secondly, how well segmented and assign the rating factor as groups
for same group customers with similar risk characteristics. The last issue is how to estimate risk of
each group precisely for corresponding rating factors. In this paper, the first two issues are not an
interesting topic; however, there is a focus on the last issue that provides an accurate estimation of the
risk.

3.1. Data descriptions

Auto insurance companies use approximately thirty to forty rating factors to differentiate each cus-
tomer premium and apply the different segmentation group for each rating factor. In this section, the
one main and basic factor in auto insurance, car type-small size car, medium size car and other factors
will be considered among several factors. The data used for the analysis is real accident results in
regards to property damage liability coverage from one property and casualty company in Korea. For
each group, one thousand samples are randomly selected and Table 1 illustrates the data structures. In
Table 1, y;; indicates the loss amount during the policy period by accident for each policy and for the
normality assumption log transformation is implemented.

From the data structure described the above, by assuming the parameter empirically, numerical
analysis regarding the ANOVA model explained in the previous section will be implemented. Our
suggesting estimator, constrained and empirical Bayes estimator and its second moment will be de-
rived and the well known and widely used estimator Bayes estimator and its second moment also will
be calculated for the comparison.

3.2. Analysis result and comparison

To indicate and evaluate the advantage of the estimators, we need to develop and define the index
with some equations that reflect the research purpose. In this paper, the purpose of estimation has
twin objectives by matching the first and second moments to produce histogram estimates close to
the histogram of population parameters. Therefore, the idea for the developed index derives from the
these objectives and the equation is:

m

2. (6 o)’ |x} - i [1:(x) - f(x)]z}

i=1

m 2
Index = w|E (flx) - m™' Zti(x)] +(1-w)|E . (3.1
i=1

where w = 1/2 to assign the equal weight for each moments, and m = 4 indicates the number of
group.
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Table 2: Numerical analysis result.

Estimates - - - Group - Index
Small size car Medium size car Large size car SUV & Van type
0 488,942 540,365 597,196 660,003
o® 481,275 523,352 580,225 548,308 1.0180
o"? 483,791 523,788 577,585 547,430 1.0190
P 478,134 522,789 583,517 549,386 1.0167
o’ 480,277 523,161 581,236 548,629 1.0176

The index reflects the weighted sum of distance both first moment and second moment. The
reason why is that the second term considers not square distance but that distance of absolute value is
equalizing the size of distance with the first term.

Table 2 provides the summary of the data analysis. The result shows the index of the CB estimator
is closer than the Bayes estimator in regards to the distance of the two parameters; in addition, the CEB
estimator is closer to the EB estimator. This proves the benefit of the constrained Bayes estimators, not
just minimizing the MSE, but trying to simultaneously match the second moments. The popular Bayes
estimates minimize the errors; however, they do not satisfy the properness of simultaneous estimation
for the point and dispersion together. In the table the advantage of the CB estimators totally comes
from the second term of the index that calculates the distance of the second moments. The difference
of index between Bayes and constrained Bayes estimators in regards to loss amount aspect, Bayes
estimators shrink toward a mean of about 28,400 won compared to the constrained Bayes estimators
and empirical Bayes estimators that shrink to 30,700 won compared to the constrained empirical
Bayes estimators. The amount is approximately a 5.0% and 5.4% deviation from the total loss mean.

The insured period of auto insurance is a one year base in Korea; therefore, a consistent pricing
technique is required every year. An accurate risk point estimation and the dispersion of the each group
should also be considered. With regard to this reason and business needs, applying the constrained
Bayes estimates for the auto insurance pricing can be a meaningful recommendations and this research
suggests alternative tools for the auto insurance business field.

4. Further Study

In this paper, we assume the loss function as a quadratic loss function which is widely used for the
estimation. However, quadratic losses are geared solely towards the precision of estimation. Some-
times there is a need to provide a framework that considers the tradeoff between goodness of fit and
precision of estimation. Balanced loss function, suggested by Zellner (1988, 1992), meets this need;
subsequently, the analysis with different loss function should be further studied for better estimation.
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