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Abstract
Cooray and Ananda (2005) proposed a composite lognormal-Pareto model to analyze loss payment data in

the actuarial and insurance industries. Their model is based on a lognormal density up to an unknown threshold
value and a two-parameter Pareto density. In this paper, we implement the minimum density power divergence
estimation for the composite lognormal-Pareto density. We compare the performances of the minimum density
power divergence estimator (MDPDE) and the maximum likelihood estimator (MLE) by simulations and an
example. The minimum density power divergence estimator performs reasonably well against various violations
in the distribution. The minimum density power divergence estimator better fits small observations and better
resists against extraordinary large observations than the maximum likelihood estimator.

Keywords: Lognormal distribution, maximum likelihood estimation, minimum distance estimation,
Pareto distribution.

1. Introduction

Insurance payment data in actuarial industries are typically highly skewed with a large upper tail. A
lognormal distribution, a Pareto distribution or a generalized Pareto distribution is often used to model
large claim data in actuarial industries (Klugman et al., 1998; Hogg and Klugman, 1984; Resnick,
1997).

Researchers often use a Pareto model with a longer and thicker tail in order to model the larger
loss data, while larger data with lower frequencies as well as smaller data with higher frequencies, are
often modeled using a lognormal model. Cooray and Ananda (2005) developed a single composite
lognormal-Pareto model and argued that it could be applied to model the entire range of loss data. In
this article, we estimate the model of loss data by the minimum density power divergence estimation
by Basu et al. (1998).

In Section 2, we introduce the minimum density power divergence estimator as well as its defini-
tion and robustness properties. We also illustrate how to implement this method for the lognormal-
Pareto model. In Section 3, we compare the performance of the maximum likelihood estimator with
the minimum density power divergence estimator through simulations and well-known Danish fire
insurance loss data. In Section 4, conclusions are drawn.
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2. Methodologies

2.1. Minimum density power divergence estimation

Basu et al. (1998) introduced the density power divergence between density functions g and f as

dα(g, f ) =
∫ {

f 1+α(x) −
(
1 +

1
α

)
g(x) f α(x) +

1
α

g1+α(x)
}

dx (α > 0).

When α = 0, the divergence d0(g, f ) is defined as

d0(g, f ) = lim
α→0

dα(g, f ) =
∫

g(x) log
{

g(x)
f (x)

}
dx.

Note that d0(g, f ) represents the Kullback-Leibler divergence.
Consider a parametric family of models {Fθ}, indexed by the unknown parameter θ (or, a vector

of parameters), possessing densities { fθ} with respect to the Lebesgue measure. Given a random
sample X1, . . . , Xn from a distribution G (G may not belong to {Fθ}) , the minimum density divergence
estimator θ̂ is generated by minimizing the estimated divergence

Hα(θ) =
∫

f 1+α
θ (x)dx −

(
1 +

1
α

)
n−1

∑
f αθ (Xi) (2.1)

with respect to θ over the parameter space. Then the estimating equations have the form

Un(θ) ≡ n−1
∑

uθ(Xi) f αθ (Xi) −
∫

uθ(z) f 1+α
θ (z)dz = 0,

where uθ(z) = ∂ log fθ(z)/∂θ is the score function.
The minimum density power divergence estimators are in fact M-estimators, and the correspond-

ing ψ function is

ψ(x, θ) = uθ(x) f αθ (x) −
∫

uθ(x) f 1+α
θ (x)dx.

Basu et al. (1998) show that under certain regularity conditions the minimum density power diver-
gence estimator is a consistent estimator of the true parameter θ0 and that its distribution, properly
normalized, is asymptotically normal. The proposed class of density power divergences is indexed by
a single parameter α that controls the trade-off between robustness and efficiency. Choices of α near
zero afford considerable robustness while retaining efficiency close to that of maximum likelihood.
That is, we can get the maximum likelihood estimator with

ψ(x, θ) = uθ(x).

2.2. Composite lognormal-Pareto model

The composite model takes a lognormal density up to an unknown threshold value and a two-parameter
Pareto density thereafter (Cooray and Ananda, 2005). The composite lognormal-Pareto model was
constructed in the following manner. Let X be a random variable with the probability density function

f (x) =
{

c f1(x), if 0 < x ≤ θ,
c f2(x), if θ < x < ∞,
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where c is the normalizing constant, f1(x) has the form of the two parameter lognormal density, and
f2(x) has the form of the two-parameter Pareto density, i.e.,

f1(x) =
(2π)−

1
2

xσ
exp

−1
2

(
ln x − µ
σ

)2, x > 0

and

f2(x) =
αθα

xα+1 , x > θ,

where θ, µ, σ, α are unknown parameter such that θ > 0, σ > 0, α > 0. Let us impose the continuity
and differentiability conditions at θ,

f1(θ) = f2(θ), f ′1(θ) = f ′2(θ),

where f ′(θ) is the first derivative of f (x) evaluated at θ. These restrictions reduce the total of unknown
parameters from four to two, and we get ln θ − µ = ασ2, and exp (−α2σ2) = 2πα2σ2. The composite
density can be re-parameterized and re-written as

f (x) =
{

f1(x), if 0 < x ≤ θ,
f2(x), if θ < x < ∞, (2.2)

with

f1(x) =
αθα

(1 + Φ(k))xα+1 exp
{
− α

2

2k2 ln2
( x
θ

)}
, x > 0

and

f2(x) =
αθα

(1 + Φ(k))xα+1 , x > θ,

where Φ(·) is the cumulative distribution function of the standard normal distribution and k is the
known constant which is given by the positive solution of the equation exp (−k2) = 2πk2. This value
is k = 0.372238898. Here ασ = k and c = 1/(1 + Φ(k)). Therefore, this composite lognormal-Pareto
density has only two unknown parameters θ, α > 0.

Let X1, X2, . . . , Xn be a random sample from the two-parameter composite lognormal-Pareto model
described in equation (2.2). Then, the likelihood function is given by

L(α, θ) =


C0α

nθnα

 n∏
i=1

x−αi

 exp

− α2

2k2

n∑
i=1

ln2
( xi

θ

), if 0 < x ≤ θ,

C0α
nθnα

 n∏
i=1

x−αi

 , if θ < x < ∞,
(2.3)

where C0 = 1/[(
∏n

i=1 xi)(1 + Φ(k))n]. The maximum likelihood estimators of θ and α, θ̂ML and α̂ML

respectively, can be obtained numerically by maximizing (2.3).

Remark 1. Both the divergence dα(g, f ) and the composite lognormal-Pareto density happened to
use the same letters α and θ as an index and a parameter, respectively. For notational convenience, let
us use β, in stead of α in the case of the composite lognormal-Pareto density in (2.2).
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2.3. Application of minimum density power divergence estimation for the composite
lognormal-Pareto model

In order to obtain the minimum density power divergence estimator for the composite lognormal-
Pareto density, we need a corresponding Hα(θ), defined in (2.1), which is

Hα(θ) =


∫ θ

0
f 1+α
1 (x)dx +

(
1 +

1
α

)
n−1

∑
f α1 (Xi), if 0 < x ≤ θ,∫ ∞

θ

f 1+α
2 (x)dx +

(
1 +

1
α

)
n−1

∑
f α2 (Xi), if θ < x < ∞,

(2.4)

where f1 and f2 are in (2.2).
The minimum density power divergence estimator of the composite lognormal-Pareto model is

obtained by minimizing the above Hα(θ) with respect to θ.
We can rewrite in detail Hα(θ) in (2.4) with∫ θ

0
f 1+α
1 (x)dx =

∫ θ

0

{
βθβ

(1 + Φ(k))x1+β

}1+α

exp
{

(1 + α)β2

2k2 ln2
( x
θ

)}
dx

=
(βθβ)1+α

(1 + Φ(k))1+α

∫ 0

−∞
{θ exp (y)}−(1+α)(1+β) exp

{
− (1 + α)β2

2k2 y2
}
θ exp (y)dy

with y = ln
( x
θ

)
=

βαθ−α

(1 + Φ(k))1+α

(
2πk2

1 + α

) 1
2

exp
{

(α + β + αβ)2k2

2(1 + α)β2

}
Φ

(
(α + β + αβ)k2

(1 + α)β2

)
and ∫ ∞

θ

f 1+α
2 (x)dx =

∫ ∞

θ

{
βθβ

(1 + Φ(k))xβ+1

}1+α

dx

=
β1+αθ−α

(1 + Φ(k))1+α

1
(α + β + αβ)

.

After having taken the derivatives of Hα(θ) with respective to β and θ, we can get the ψ-functions
for β and θ which are plotted in Figure 1. The plots are drawn by setting the true values of β and
θ being 0.5 and 50 (similar to Cooray and Ananda (2005)), respectively. The ψ-functions for max-
imum likelihood estimator are bounded on the right-hand side of the real line but are unbound near
zero; however, these functions for minimum density power divergence estimator are bounded every-
where. Hampel, et al. (1986) witnessed that bounded and continuous ψ-functions result in qualitative
robustness for ordinary M-estimates at certain distributions. Therefore, both maximum likelihood es-
timator and a minimum density power divergence estimator are robust against an outlier; however, a
maximum likelihood estimator may not be robust against an inlier (smaller observations).

The Pareto model was originally designed to handle large observations, so β could cope with
a large observation. The θ is a threshold parameter so that the influence of an observation beyond
that θ should be bounded or limited. Robustness of both the maximum likelihood estimator and
the minimum density power divergence estimator for larger observations is intrinsic; however, the
maximum likelihood estimator would be influenced by a small observation as the ψ-functions of
maximum likelihood estimator for both β and θ are unbounded near zero.
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Figure 1: ψ-function for β(left) and θ(right) for various choices of α, assuming β = 0.5 and θ=50.

Table 1: Mean squared errors for the estimators under various contamination
Contamination Uncontaminated Contaminated at 1 Contaminated at 5

m.s.e. β θ β θ β θ

m.l.e. 0.0094 76.84 0.0442 309.83 0.0252 302.89
α = 0.1 0.0132 83.81 0.0543 119.58 0.0268 258.19
α = 0.2 0.0160 91.21 0.0656 145.50 0.0196 220.74
α = 0.3 0.0207 99.74 0.0752 353.13 0.0113 209.97
α = 0.4 0.0265 108.48 0.0699 476.35 0.0126 209.17
α = 0.5 0.0325 116.81 0.0557 381.80 0.0136 211.23
α = 0.6 0.0386 124.72 0.0460 233.30 0.0160 215.77
α = 0.7 0.0448 132.26 0.0409 157.58 0.0205 223.40
α = 0.8 0.0519 139.51 0.0400 136.58 0.0261 228.91
α = 0.9 0.0592 145.97 0.0426 131.68 0.0321 230.97

3. Simulations and an Example

Data 1. (Artificial data) We conducted a simulation experiment to investigate the effect of minimum
density power divergence estimator under various model conditions. We generate 1000 samples of
size 50 from the composite lognormal-Pareto model with true parameter values of β = 0.5 and θ = 50
as we did for Figure 1. We also generated four sets of contaminated samples by replacing 10%
of each sample generated above by 1 and 5, respectively. We intentionally contaminated the data
with both small and large numbers. The maximum likelihood estimator and the minimum density
power divergence estimator with α = 0.1, 0.2, . . . , 0.8, 0.9 are calculated, and their mean squared
errors (m.s.e.)are computed (Table 1). When contamination is not assumed, the maximum likelihood
estimator is superior to the minimum density power divergence estimator in terms of mean squared
error. When contamination is assumed at 1 and 5, the minimum density power divergence estimators
perform better than maximum likelihood estimators as α near 0.6∼0.8 (when contaminated at 1) or
0.3∼0.6 (when contaminated at 5). This was expected due to the shape of the ψ-functions in Figure
1. Recall that a Bounded and continuous ψ-functions result in qualitative robustness for ordinary
M-estimates at certain distributions (Hampel et al., 1986).
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Table 2: Estimates and goodness-of-fit statistics for Danish data
Method β̂ θ̂ CVM K-S test

maximum likelihood estimator 1.4363 1.3851 1.0001 0.0273
α = 0.1 1.5007 1.3624 1.0003 0.0241
α = 0.2 1.5305 1.3468 1.0008 0.0197
α = 0.5 1.5924 1.3085 1.0021 0.0051
α = 0.9 1.6459 1.2707 1.0043 0.0011

Table 3: Chi-square test for goodness of fit: p-values
Upper limit Maximum likelihood estimator α = 0.2 α = 0.5 α = 0.9

1.75 0.200 0.042 0.010 0.000
2.25 0.312 0.086 0.021 0.000
2.75 0.339 0.141 0.044 0.000
3.25 0.494 0.241 0.083 0.000
3.75 0.526 0.326 0.141 0.000
4.25 0.170 0.044 0.012 0.000
4.75 0.196 0.044 0.009 0.000
5.25 0.243 0.043 0.008 0.000
5.75 0.259 0.036 0.007 0.000
6.25 0.230 0.027 0.003 0.000
∞ 0.299 0.016 0.000 0.000

Data 2. (Danish fire insurance loss data) The data set consists of 2492 large fire insurance claims
in Denmark from January 3rd 1980 until December 31st 1990. The data set is retrieved from the
data depository in R. In order to compare the models, we used (a) Kolmogorov-Smirnov test statistics
(K-S) based on the statistic:

Dn = sup
1≤i≤n
|F(xi) − Fn(xi)|

and (b) Cramer-von Mises test (CVM) based on the statistic:

W2 =

∫ ∞

−∞
(Fn(x) − F(x))2 f (x)dx,

where f (x), Fn(x) and F(x) are the model density, empirical distribution, and model distribution,
respectively. Both test statistics signify the level of fitness as long as the statistics are sufficiently
small. Both statistics for Danish data are recorded in Table 2. Additionally, the data is binned with
upper limits (in millions) 1.25,1.75, 2.25, 2.75, 3.25, 3.75, 4.25, 4.75, 5.25, 5.75, 6.25 and∞, and the
p-values of the chi-square test for goodness-of-fit using expected and observed frequencies in every
bin until each upper limit, are recorded in Table 3. The larger the p-value, the better a model fits a data
set. Table 4 lists the empirical and fitted models quantiles for the Danish data. The estimates were
calculated in R using the nlm function and the test statistics are computed based on various add-on
packages in Ricci (2005). Some statistics in this example are slightly different from those of Cooray
and Ananda (2005) and McNeil (1997). McNeil (1997) analyzed the upper portion of this data, which
consist of 2156 losses of over one million Danish Krone.

We can summarize the results as follows.
Table 2: We use the Kolmogorov-Smirnov (K-S) test statistic as a base line to compare the models.

The Smaller value of the K-S test statistic implies the better fit for a given model. Critical values of
the K-S test statistic are 1.22/

√
2492 ≈ 0.0244 , 1.36/

√
2492 ≈ 0.0272 and 1.63/

√
2492 ≈ 0.0326,

respectively, at the 10, 5, and 1% levels of significance. All models we consider fit the data well at
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Table 4: Empirical and fitted models quantiles for the Danish data
Quantile Empirical Maximum likelihood estimator α = 0.2 α = 0.5 α = 0.9

.90 5.0804 4.8492 4.4867 4.1260 3.7653

.95 8.4537 7.7336 6.8914 6.1700 5.8093

.99 24.5785 24.3251 19.6360 17.3516 15.4279

.999 144.6576 120.2710 88.7699 73.3801 62.5592

.9999 263.2504 596.874 399.4516 310.9603 253.0080
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Figure 2: Histogram and estimated densities for various β.

5% and 1% levels of significance; in addition, no significant difference in the CVM test statistics is
observed.

Figure 2, Table 3: The models by the minimum density power divergence estimator better fit
smaller claims and can identify the peak more clearly than the model by the maximum likelihood
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Figure 3: Q-Q plots Danish data to the composite lognormal-Pareto model by maximum likelihood estimator
and minimum density power divergence estimator with various α.

estimator. As a whole, the models by the maximum likelihood estimator and by the minimum density
power divergence estimator with α = 0.2 fit 1% level of significance the data better than others. The
minimum density power divergence estimator with high values of α somehow over-fit the peak so that
χ2 test statistics are inflated (p-value becomes too small).

Figure 2, Table 4: We admit that the models by the minimum density power divergence estimator
underestimate the tail on the right. However, it can be said in reverse that the model by the maximum
likelihood estimator overestimates the right upper tail ( it produces the highest quantile value of all; it
has a longer tail), which should be estimated as exactly as possible in order for insurance companies
to predict future losses. This occurs because the minimum density power divergence estimator is less
affected by larger and smaller observations than is the maximum likelihood estimator as the nature of
a ψ-function (Figure 1).
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Figure 3: The estimated quantiles are plotted against the ordered observations. The estimated pth

quantile is estimated from the fitted model, and here p = (r − 0.5)/n, r = 1, 2, . . . , n. We can observe
that the model by the minimum density power divergence estimator with α = 0.2 fits both the main
body of data and the extreme quantiles better than other models.

In conclusion, we recommend the model by the minimum density power divergence estimator
with α = 0.2 due to small value of K-S and CVM, the quantiles and the quantile plot.

4. Conclusions

The maximum likelihood estimator and the minimum density power divergence estimator for the
composite lognormal-Pareto model are studied and compared by simulations and an example. Based
on the composite lognormal-Pareto model, both the maximum likelihood estimator and the minimum
density power divergence estimator fit the data well, but the minimum density power divergence esti-
mator is better than the maximum likelihood estimator in terms of avoiding the influence of extremely
small and large observations. Since the maximum likelihood estimation underestimates small ob-
servations, the estimated density by the maximum likelihood estimator should overestimates larger
observations in order for the area under the density curve to be 1. For the purpose of predicting large
losses reasonably, we claim that the minimum density power divergence estimator is useful when con-
sidered alongside the maximum likelihood estimator. There are two more additional contributions on
the composite lognormal-Pareto model by Scollnik (2007) and Pigeon and Denuit (2011). The com-
parison of estimation methods for those models should have been attempted for a contribution to the
field of actuarial science or insurance; however, we have focused on the applicability of the minimum
density power divergence estimator on composite models that considered only the original and basic
model by Cooray and Ananada (2005).
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