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Abstract
In this study, we propose a nonparametric simultaneous test procedure for the location translation and scale

parameters. We consider the Wilcoxon rank sum test for the location translation parameter and the Mood test
for the scale parameter with the quadratic and maximal types of combining functions. Then we derive the
limiting null distributions of the combining functions. We illustrate our procedure with an example and compare
efficiency by obtaining the empirical powers through a simulation study. Finally, we discuss some interesting
features related to the nonparametric simultaneous tests.
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1. Introduction

One can use a non-parametric test such as the famous Wilcoxon rank sum test under the location
translation assumption to compare two types of treatments or a treatment with control. In addition,
one may consider applying the Ansari-Bradley test for the equality of variances or scales under some
suitable conditions. However, one may sometimes consider to test the location translation and scale
parameters simultaneously with the nonparametric approach. For this matter, Lepage (1971) proposed
a nonparametric test procedure that compared the Wilcoxon and Ansari-Bradley statistics (Randles
and Wolfe, 1979) with some discussions for the distributional aspects of the proposed statistic. Also,
Lepage (1973) tabulated the exact critical values and significance levels for some selected sample
sizes. Since then various modifications and new procedures have been reported and proposed by
several authors (Murakami, 2007; Rublik, 2009; Neuhäuser et al., 2011). Almost all the results have
been based on the quadratic form for the combining function (Pesarin, 2001) to combine two kinds of
test statistics to test the location translation and scale parameters.

To obtain the critical values or more generally p-values, one may consider the permutation prin-
ciple (Good, 2000) for the exact null distribution of the chosen combining function for the small or
reasonable sample sizes (Lepage, 1973). However, for a large sample case, it would be necessary to
derive the limiting null distribution for the given test statistic through the large sample approximation
theorem. In this study, we will obtain the limiting null distributions of the combining functions.

In this research, we consider to propose nonparametric simultaneous tests for the location transla-
tion and scale parameters using the Wilcoxon rank sum and Mood tests. The rest of this paper will be
organized with the following order and content. In Section 2, we propose nonparametric simultane-
ous tests that combine two nonparametric statistics and derive the limiting null distributions with the
large sample approximation theorem. Then we illustrate our procedure with a numerical example and
compare the efficiency between the proposed tests by obtaining empirical powers through computer
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simulation in Section 3. Finally, we discuss some interesting features related to the simultaneous tests
in Section 4.

2. Simultaneous Test

Let X11, . . . , X1n1 and X21, . . . , X2n2 be two independent random samples from populations with con-
tinuous but unknown distribution functions F1 and F2, respectively. In the sequel, n = n1 + n2. In this
study, we assume that we are interested in the following location-scale model such as

F2(x) = F1

(
x − δ
η

)
,

where δ ∈ (−∞,∞) and η ∈ (0,∞) are the location translation and scale parameters, respectively.
Then our main interest would be to test

H0 : {δ = 0} ∩ {η = 1} against H1 : {δ , 0} ∪ {η , 1} . (2.1)

To test the sub-null hypothesis H10 : δ = 0, various nonparametric tests have been proposed that may
be optimal according to the underlying distributions. To test the sub-null hypothesis H20 : η = 1,
several nonparametric tests have also been proposed. In this study, we consider using the Wilcoxon
rank sum test for H10 : δ = 0 and the Mood test for H20 : η = 1 (Randles and Wolfe, 1979). Let Wn

and Mn be the Wilcoxon rank sum statistic and Mood statistic, respectively. Then Wn and Mn can be
defined as

Wn =

n2∑
j=1

R2 jMn =

n2∑
j=1

{
R2 j −

n + 1
2

}2

,

where R2 j is the rank of X2 j from the combined sample. Also let E0 and V0 be the mean and variance
under H0. Then we may propose a nonparametric test statistic Tn as follows:

Tn =
(Wn − E0(Wn))2

V0(Wn)
+

(Mn − E0(Mn))2

V0(Mn)
.

The component of Tn tends to have a large value when the corresponding H0i, i = 1, 2, is not true;
therefore, we may reject H0 in favor of H1 for large values of Tn. Then in order to obtain the critical
value for any given significance level (or more generally, p-value) we have to derive the null dis-
tribution of Tn. For the small or reasonable sample sizes, one may obtain the null distribution with
applying the permutation principle. However, for the large sample case, we have to obtain the asymp-
totic normality through the large sample approximation theory. First, we need the following simple
results.

Lemma 1. Under H0, we have

E0(Wn) =
n2(n + 1)

2
, V0(Wn) =

n1n2(n + 1)
12

,

E0(Mn) =
n2(n2 − 1)

12
, V0(Mn) =

n1n2(2n + 1)(8n + 11)
180

.

Then it is easy to show that with the continuity theorem (Bickel and Doksum, 1977),

(Wn − E0(Wn))2

V0(Wn)
and

(Mn − E0(Mn))2

V0(Mn)
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converge in distribution to chi-square random variables with 1 degree of freedom.

Theorem 1. Under H0 : {δ = 0} ∩ {η = 1}, we have that COV0(Wn,Mn), the covariance between Wn

and Mn is that

COV0(Wn,Mn) = 0.

Proof: First of all, we note that COV0(Wn,Mn) = E0(WnMn) − E0(Wn)E0(Mn). Then we have

WnMn =

 n2∑
j=1

R2 j


 n2∑

j=1

{
R2 j −

n + 1
2

}2


=

 n2∑
j=1

R2 j


 n2∑

j=1

R2
2 j

 − (n + 1)

 n2∑
j=1

R2 j

2

+
n2(n + 1)2

4

 n2∑
j=1

R2 j

 .
In addition, we note that

E0(R21) =
1
n

n∑
i=1

i =
n + 1

2
, E0

(
R2

21

)
=

1
n

n∑
i=1

i2 =
(n + 1)(2n + 1)

6
,

E0

(
R3

21

)
=

1
n

n∑
i=1

i3 =
n(n + 1)2

4
, E0

(
R21R2

22

)
=

1
n(n − 1)

∑∑
i, j

i j2 =
n(n + 1)2

6
.

Since (
∑n2

j=1 R2 j)(
∑n2

j=1 R2
2 j) =

∑n2
j=1 R3

2 j +
∑∑

i, j R2iR2
2 j, we have

E0


 n2∑

j=1

R2 j


 n2∑

j=1

R2
2 j


 = n2(2n2 + 1)n(n + 1)2

12
.

Thus, we have

E0(WnMn) =
n2

2(n + 1)2(n − 1)
24

.

From Lemma, we see that

E0(Wn)E0(Mn) =
n2

2(n + 1)2(n − 1)
24

,

which completes the proof of Theorem 1. �

Theorem 2. Under H0, the limiting distribution of Tn is a chi-square distribution with 2 degrees of
freedom.

Then using Theorem 2, we may complete a simultaneous test procedure for any given significance
level. However, since Tn is of the quadratic form, it would be difficult to apply the one-sided type of
alternatives such as H11 : δ > 0 or H12 : η < 1. In order to accommodate these partially one-sided
alternatives, one may consider the following maximal type of statistic.

S n = max
{

Wn − E0(Wn)
√

V0(Wn)
,

Mn − E0(Mn)
√

V0(Mn)

}
.
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Table 1: Kerosene heater data
Brand Time in second

A 69.3 56.0 22.1 47.6 53.2 48.1 23.2 13.8 52.6 34.4 60.2 43.8
B 28.6 25.1 26.4 34.9 29.8 28.4 38.5 30.2 30.6 31.8 41.6 21.1 36.0 37.9 13.9

Theorem 3. Under H0, the limiting distribution of S n is the product of two independent standard
normal distributions with the same end value.

Proof: For any real number s, first of all, we note that

Pr {S n ≤ s} = Pr
{

Wn − E0(Wn)
√

V0(Wn)
≤ s,

Mn − E0(Mn)
√

V0(Mn)
≤ s

}
.

We have the result since each component converges in distribution to a standard normal random vari-
able and the two components are uncorrelated. �

3. A Numerical Example and Simulation Study

In this section, we first illustrate our procedure with a numerical example with the data in Milton and
Arnold (2003) tabulated in Table 1. In this example, two brands of kerosene heaters are tested. The
observations are the times in seconds required to raise the room temperature 10◦F. Moser and Stevens
(1992) raised the question whether only the two-sample t-test would be appropriate for this data set by
obtaining 0.0449 as p-value to test the equality of two variances. With this result, they concluded that
rather than applying the usual two-sample t-test for this data set in Table 1, one should consider using
the Satterthwaite test, which is a testing procedure for the mean difference when the two variances
seem to unequal. Furthermore it seems that the symmetry of the data would be questionable, which
is a serious drawback for applying the usual two-sample t-test. Therefore, it would be interesting to
check the location translation and scale problems simultaneously with a nonparametric test procedure.
Then to test (2.1), we have obtained 0.0024 and 0.0003 as p-values for simultaneous tests with Tn and
S n, respectively.

We now compare the performance between Tn and S n by obtaining empirical powers through a
simulation study. For this we consider four different distributions such as normal, Cauchy, double
exponential and exponential with (10, 10), (10, 15) (15, 10) pairs of the sample sizes. The values
of (δ, η) varies from (0.0, 1.0) to (2.0, 3.0) with 0.5 increment for each component. The simulation
has been repeated 10,000 times with SAS/IML PC version with the nominal significance level 0.05.
The results are summarized in Table 2 through 5. We note that the nominal significance levels are
over-estimated for Tn while under-estimated for S n for all cases. With this in mind, it appears that
S n achieves more efficiency than Tn does for the normal and double-exponential cases. However the
other two cases- Cauchy and exponential distributions-seem to be the same in their performances.

4. Some Concluding Remarks

We have obtained the p-values in the previous section for the example and empirical powers in the
simulation study using the limiting distribution approach. In addition, one may obtain all the nec-
essary probabilities through applying the permutation principle which is a re-sampling method. The
permutation principle has been initiated by Fisher (1925) but the application to the statistics has be-
gun relatively lately with the development of adequate computer facilities and corresponding software
since the re-sampling method requires exceptionally burdensome computational tasks. However the
permutation principle has been known to producing an exact procedure.
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Table 2: Normal distribution

Test (n1, n2) (η, δ)
(0.0, 1.0) (0.5, 1.5) (1.0, 2.0) (1.5, 2.5) (2.0, 3.0)

(10, 10) 0.0791 0.1647 0.2896 0.3943 0.4705
Tn (10, 15) 0.0816 0.1924 0.3332 0.4390 0.5133

(15, 10) 0.0806 0.1723 0.3244 0.4390 0.5204
(10, 10) 0.0302 0.1379 0.2746 0.3919 0.4769

S n (10, 15) 0.0253 0.1623 0.3159 0.5383 0.5243
(15, 10) 0.0294 0.1371 0.2915 0.4209 0.5138

Table 3: Cauchy distribution

Test (n1, n2) (η, δ)
(0.0, 1.0) (0.5, 1.5) (1.0, 2.0) (1.5, 2.5) (2.0, 3.0)

(10, 10) 0.0787 0.1092 0.1545 0.1988 0.2353
Tn (10, 15) 0.0813 0.1172 0.1727 0.2233 0.2676

(15, 10) 0.0793 0.1037 0.1539 0.2040 0.2466
(10, 10) 0.0299 0.0775 0.1290 0.1794 0.2182

S n (10, 15) 0.0266 0.0814 0.1407 0.1960 0.2448
(15, 10) 0.0266 0.0717 0.1244 0.1733 0.2185

Table 4: Double exponential distribution

Test (n1, n2) (η, δ)
(0.0, 1.0) (0.5, 1.5) (1.0, 2.0) (1.5, 2.5) (2.0, 3.0)

(10, 10) 0.0838 0.1497 0.2553 0.3448 0.4100
Tn (10, 15) 0.0795 0.1727 0.2961 0.3950 0.4611

(15, 10) 0.0819 0.1578 0.2793 0.3861 0.4650
(10, 10) 0.0341 0.1233 0.2333 0.3348 0.4098

S n (10, 15) 0.0267 0.1363 0.2737 0.3807 0.4648
(15, 10) 0.0307 0.1191 0.2437 0.3607 0.4498

Table 5: Exponential distribution

Test (n1, n2) (η, δ)
(0.0, 1.0) (0.5, 1.5) (1.0, 2.0) (1.5, 2.5) (2.0, 3.0)

(10, 10) 0.0811 0.1127 0.1392 0.1578 0.1714
Tn (10, 15) 0.0791 0.1323 0.1713 0.1928 0.2114

(15, 10) 0.0821 0.1041 0.1318 0.1475 0.1614
(10, 10) 0.0284 0.0824 0.1197 0.1440 0.1630

S n (10, 15) 0.0276 0.0993 0.1490 0.1786 0.2015
(15, 10) 0.0320 0.0761 0.1121 0.1329 0.1522

In this study, we have used two types of combining functions such as the quadratic and maximal
forms. In addition, one may use the summing type of combining function. However we did not
consider the summing type of combining function in this study since it would produce the equivalent
or asymptotically equivalent results with Tn by the fact that Tn is the sum of two squared statistics.
For more discussion of the combining functions, you may refer to Pesarin (2001).

The non-correlatedness between Wn and Mn may resemble the independence between X̄ and S 2

under the normality assumption. However, the probabilistic or distributional properties should be
noted and discussed in a future study since it could provide insight into the inter-relation between
two statistics for the location translation and scale parameters with disregard to the parametric or
nonparametric approach.

A referee has recommended an increase of sample sizes to observe if the over- and under-estimation
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of the nominal significance level may be alleviated. Even for the case that n1 = n2 = 100, we have
seen that the phenomenon does not disappear. This might come from the structural cause of the
combinations of two individual tests.
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