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SOME TRANSLATION SURFACES IN THE 3-DIMENSIONAL

HEISENBERG GROUP

Dae Won Yoon, Chul Woo Lee, and Murat Kemal Karacan

Abstract. In this paper, we define translation surfaces in the 3-dimen-
sional Heisenberg group H3 obtained as a product of two planar curves
lying in planes, which are not orthogonal, and study minimal translation
surfaces in H3.

1. Introduction

Minimal surfaces are one of main objects which have drawn geometers’ in-
terest for a very long time. In 1744, L. Euler found that the only minimal
surfaces of revolution are the planes and the catenoids, and in 1842 E. Catalan
proved that the planes and the helicoids are the only minimal ruled surfaces
in the 3-dimensional Euclidean space E

3. Also, H. F. Scherk in 1835 studied
translation surfaces in E

3 defined as graph of the function z(x, y) = f(x)+g(y)
and he proved that, besides the planes, the only minimal translation surfaces
are the surfaces given by

(1.1) z =
1

a
log

∣

∣

∣

∣

cos(ax)

cos(ay)

∣

∣

∣

∣

=
1

a
log | cos(ax)| −

1

a
log | cos(ay)|,

where f(x) and g(y) are smooth functions on some interval of R and a is a
non-zero constant. These surfaces are now referred as Scherk’s minimal sur-
faces. The study of minimal surfaces of revolution, ruled surfaces and trans-
lation surfaces in the Euclidean space was extended to the Lorentz version by
O. Kobayashi [4] and I. V. de Woestijne [8]. R. López [5] studied transla-
tion surfaces in the 3-dimensional hyperbolic space H

3 and classified minimal
translation surfaces.

Translation surfaces can be defined in any 3-dimensional Lie group equipped
with left invariant Riemannian metric. A translation surface in the 3-dimen-
sional Lie group equipped with a left invariant metric is a surface in the group
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parametrized as a product of two curves (cf. [3]). In [3] J. Inoguchi, R. López
and M. I. Munteanu defined translation surfaces in the 3-dimensional Heisen-
berg groupH3 in terms of a pair of two planar curves lying in orthogonal planes
and they classified minimal translation surfaces in H3. Also, R. López and M.
I. Munteanu [6] constructed translation surfaces in Sol3 and investigated prop-
erties of minimal one. The space Sol3 is a simply connected homogeneous the
3-dimensional manifold whose isometry group has dimension 3 and it is one of
the eight models of geometry of W. Thurston [7].

On the other hand, Scherk’s minimal surface given by (1.1) can be also
parametrized by

(1.2) x(s, t) =

(

a, 0,
1

a
log | cos(as)|

)

+

(

0, t,
−1

a
log | cos(at)|

)

,

and it is defined as the sum of two planar curves lying in orthogonal planes. In
[1] authors considered translation surfaces generated as the sum of planar curves
lying in planes, which are not orthogonal, and they classified such minimal one.

In this paper, we classify translation surfaces in the 3-dimensional Heisenberg
group H3 obtained as a product of two planar curves lying in any two planes.

2. Preliminaries

The 3-dimensional Heisenberg group H3 is a matrix group which is given by

H3 =

{(1 x z

0 1 y

0 0 1

)

∣

∣

∣ x, y, z ∈ R

}

.

The Heisenberg group H3 is represented as the Cartesian 3-space R3(x, y, z)
with the group operation (cf. [2]):

(2.1) (x, y, z) ∗ (x̄, ȳ, z̄) =

(

x+ x̄, y + ȳ, z + z̄ +
1

2
xȳ −

1

2
yx̄

)

.

The identity of the group is (0, 0, 0) and the inverse of (x, y, z) is (−x,−y,−z).
It is simply connected and connected 2-step nilpotent Lie group.

On the other hand, the orthonormal basis of the tangent space at the identity
are

E1 =





0 1 0
0 0 0
0 0 0



 , E2 =





0 0 0
0 0 1
0 0 0



 , E3 =





0 0 1
0 0 0
0 0 0





and the left invariant metric g̃ in H3 is given by

(2.2) g̃ = dx2 + dy2 +

(

dz +
1

2
(ydx− xdy)

)2

.

And the left invariant orthonormal frame on H3 are given by

e1 =
∂

∂x
−

y

2

∂

∂z
, e2 =

∂

∂y
+

x

2

∂

∂z
, e3 =

∂

∂z
,
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for which we have the Lie brackets

[e1, e2] = e3, [e2, e3] = 0, [e3, e1] = 0.

Also, the Livi-Civita connection ▽̃ of H3 is expressed as

▽̃e1e1 = 0, ▽̃e1e2 =
1

2
e3, ▽̃e1e3 = −

1

2
e2,

▽̃e2e1 = −
1

2
e3, ▽̃e2e2 = 0, ▽̃e2e3 =

1

2
e1,

▽̃e3e1 = −
1

2
e2, ▽̃e3e2 =

1

2
e1, ▽̃e3e3 = 0.

A translation surface Σ(α, β) in the 3-dimensional Heisenberg group H3 is
a surface parametrized by

x : Σ → H3, x(s, t) = α(s) ∗ β(t),

where α and β are any generating curves in R
3. Since the group operation

∗ is not commutative, we have two translation surfaces, namely Σ(α, β) and
Σ(β, α), which are different.

Now, we define translation surfaces in H3 generated by two planar curves α
and β lying in not orthogonal planes. According to planar curves α and β, we
distinguish six types as follows:

First, we assume that α(s) lies in the xz-plane of R3 and β(t) in the plane
with equation x cos θ − y sin θ = 0. This means that

α(s) = (s, 0, f(s)),

β(t) = (t sin θ, t cos θ, g(t)).

In this case, we have two translation surfaces Σ1(α, β) and Σ4(α, β) parametr-
ized by, respectively

(2.3)

x(s, t) = α(s) ∗ β(t)

=

(

s+ t sin θ, t cos θ, f(s) + g(t) +
st cos θ

2

)

and

(2.4)

x(s, t) = β(t) ∗ α(s)

=

(

s+ t sin θ, t cos θ, f(s) + g(t)−
st cos θ

2

)

,

which are called the translation surfaces of type 1 and 4.
Second, if a curve α(s) lies in the xz-plane of R3 and β(t) in the plane with

equation z cos θ − y sin θ = 0, that is,

α(s) = (s, 0, f(s)),

β(t) = (g(t), cos θt, sin θt),
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then the parametrization of Σ2(α, β) is given by

(2.5)

x(s, t) = α(s) ∗ β(t)

=

(

s+ g(t), cos θt, f(s) + sin θt+
st cos θ

2

)

and the parametrization of Σ5(β, α) is given by

(2.6)

x(s, t) = β(t) ∗ α(s)

=

(

s+ g(t), cos θt, f(s) + sin θt−
st cos θ

2

)

.

The surfaces Σ2 and Σ5 are said to be of type 2 and type 5, respectively.
Third, we consider two curves α(s) and β(t) lying the yz-plane of R3 and

the plane with equation sin θx− cos θz = 0, respectively. In this case, α(s) and
β(t) are given by

α(s) = (0, s, f(s)),

β(t) = (cos θt, g(t), sin θt).

Thus, the translation surface Σ3(α, β) is parametrized by

(2.7)

x(s, t) = α(s) ∗ β(t)

=

(

cos θt, s+ g(t), f(s) + sin θt−
st cos θ

2

)

and the translation surface Σ6(β, α) is parametrized by

(2.8)

x(s, t) = β(t) ∗ α(s)

=

(

cos θt, s+ g(t), f(s) + sin θt+
st cos θ

2

)

,

which are called the translation surfaces of type 3 and type 6, respectively.

Remark 2.1. If θ = kπ, k ∈ N in all types, the surfaces defined in [3] appear.
So, translation surfaces of type 1-6 is generalization of surfaces given in [3].

3. Minimal translation surfaces of type 1 and type 4

Let Σ1 be a translation surface of type 1 in the 3-dimensional Heisenberg
space H3. Then, Σ1 is parametrized by

(3.1) x(s, t) =

(

s+ t sin θ, t cos θ, f(s) + g(t) +
st cos θ

2

)

.

We have the natural frame {xs, xt} given by

∂x

∂s
:= xs = e1 + (f ′(s) + t cos θ)e3,

∂x

∂t
:= xt = sin θe1 + cos θe2 + g′(t)e3.
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From this, the unit normal vector field U of Σ1 is given by

U = w−
1

2 (− cos θ(f ′(s)+t cos θ)e1 + (sin θ(f ′(s)+t cos θ)− g′(t))e2 + cos θe3) ,

where w = ||xs × xt||
2.

The coefficients of the first fundamental form of Σ1 are given by

E = 〈xs, xs〉 = 1 + (f ′(s) + t cos θ)2,

F = 〈xs, xt〉 = sin θ + g′(t)(f ′(s) + t cos θ),

G = 〈xt, xt〉 = 1 + g′(t)
2
.

To compute the second fundamental form of Σ1, we have to calculate the
following:

▽̃xs
xs = −(f ′(s) + t cos θ)e2 + f ′′(s)e3,

▽̃xs
xt =

1

2
cos θ(f ′(s)+t cos θ)e1−

1

2
(sin θ(f ′(s)+t cos θ) + g′(t))e2+

1

2
cos θe3,

▽̃xt
xt = cos θg′(t)e1 − sin θg′(t)e2 + g′′(t)e3,

which imply the coefficients of the second fundamental form of Σ1 are given by

L = 〈▽̃xs
xs, U〉 = −w−1/2 (sin θf ′(s)

2
+ 2f ′(s) sin θ cos θt−f ′(s)g′(t)

+ sin θ cos2 θt2 − cos θg′(t)t− cos θf ′′(s)
)

,

M = 〈▽̃xs
xt, U〉 = −

1

2
w−1/2(f ′(s)

2
+ 2t cos θf ′(s) + t2 cos2 θ − g′(t)

2
− cos θ),

N = 〈▽̃xt
xt, U〉 = −w−1/2(f ′(s)g′(t) + t cos θg′(t)− sin θg′(t)

2
− cos θg′′(t)).

Thus, the mean curvature of Σ1 is given by
(3.2)

H =
1

2
w−3/2 cos θ(−g′′(t)− f ′′(s) + t cos2 θg′(t) + cos θf ′(s)g′(t)− f ′(s)

2
g′′(t)

− t2 cos2 θg′′(t)− f ′′(s)g′(t)
2
+ sin θ cos θ − 2t cos θf ′(s)g′′(t)).

If cos θ = 0, then H = 0, that is, minimal. In this case, Σ1 is an open part of
a plane (trivial minimal surface).

We suppose that the translation surface Σ1 of type 1 is non-trivial minimal.
Then from (3.2) we obtain

(3.3)
f ′′(s)(1 + g′(t)

2
)− (cos θf ′(s) + t cos2 θ)g′(t)

+ (1 + (f ′(s) + t cos θ)2)g′′(t)− sin θ cos θ = 0.

In order to solve the above ordinary differential equation, divide by 1+g′(t)
2
6=

0. We obtain

f ′′(s)− (cos θf ′(s) + t cos2 θ)
g′(t)

1 + g′(t)2

+
g′′(t)

1 + g′(t)
2 (1 + (f ′(s) + t cos θ)2)−

sin θ cos θ

1 + g′(t)
2 = 0.
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Taking the derivative with respect to s, we have

(3.4) f ′′′(s)− cos θf ′′(s)
g′(t)

1 + g′(t)
2 + 2

g′′(t)

1 + g′(t)
2 (f

′(s) + t cos θ)f ′′(s) = 0.

The case f ′′(s) = 0 will be treated separately. First of all, let us suppose that
f ′′(s) 6= 0 on an open interval. Then equation (3.4) becomes

(3.5)
f ′′′(s)

f ′′(s)
− cos θ

g′(t)

1 + g′(t)
2 + 2

g′′(t)

1 + g′(t)
2 (f

′(s) + t cos θ) = 0.

Differentiating (3.5) with respect to t, we have
(3.6)

cos θ
d

dt

(

g′(t)

1 + g′(t)2

)

−2(f ′(s)+t cos θ)
d

dt

(

g′′(t)

1 + g′(t)2

)

−2
g′′(t)

1 + g′(t)2
cos θ = 0.

If d
dt

(

g′′(t)

1+g′(t)2

)

6= 0, then by (3.6) f ′(s) + t cos θ depends only on t. So, we get

f ′′(s) = 0, it is a contradiction. Thus, g′′(t)

1+g′(t)2
= A (=constant). It follows

that equation (3.6) rewritten as the form:

cos θA

(

1 +
2g′(t)

2

1 + g′(t)
2

)

= 0.

From this, we have A = 0 because cos θ 6= 0. Thus, g′′(t) = 0. We put
g(t) = ct+ d (c, d ∈ R). Substituting it in (3.3), we get

f ′′(s)(1 + c2)− (cos θf ′(s) + t cos2 θ)c− sin θ cos θ = 0,

it follows that c = 0 and f ′′(s) = cos θ sin θ. We put f ′(s) = sin θ cos θs + a

(a ∈ R). Substituting it in (3.3), one obtain

sin θ cos θ(1 + c2)− (sin θ cos2 θ + a cos θ + t cos2 θ)c = 0,

which implies c = 0 and sin θ cos θ = 0. It is a contradiction. Consequently, for
any minimal translation surface of type 1, we have f ′′(s) = 0.

Take f(s) = as+ b (a, b ∈ R). From this, equation (3.3) becomes

g′′(t)−
a cos θ + t cos2 θ

1 + (a+ t cos θ)2
g′(t)−

sin θ cos θ

1 + (a+ t cos θ)2
= 0.

We can easily find a general solution of the above ODE and its solution is given
by
(3.7)

g(t)

=
c1

cos θ

[

(a+ t cos θ)
√

1 + (a+ t cos θ)2+ln(a+ t cos θ +
√

1 + (a+ t cos θ)2)
]

+ sin θ(at+
1

2
cos θt2 + c2),

where c1 and c2 are constants of integration.
Thus, we have the following:
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Theorem 3.1. A translation surface of type 1 in the 3-dimensional Heisenberg

space H3 is a non-trivial minimal surface if and only if the surface can be

parametrized as

x(s, t) =

(

s+ t sin θ, t cos θ, f(s) + g(t) +
st cos θ

2

)

,

where f(s) = as+ b (a, b ∈ R) and g(t) is given by (3.7).

Let Σ4 be a translation surface of type 4 in the 3-dimensional Heisenberg
space H3. Then, Σ4 is parametrized by

(3.8) x(s, t) =

(

s+ t sin θ, t cos θ, f(s) + g(t)−
st cos θ

2

)

.

By a long computation, we can obtain the mean curvature H as

H =
1

2
w−3/2

(

g′′(t) + f ′′(s)− s cos2 θf ′(s) + cos θf ′(s)g′(t) + f ′′(s)g′(t)
2

+s2 cos2 θf ′′(s) + f ′(s)
2
g′′(t) + sin θ cos θ − 2s cos θf ′′(s)g′(t)

)

.

Suppose that the translation surface Σ4 of type 4 is non-trivial minimal.
Then, by using similar method of the translation surface of type 1, we have the
following result:

Theorem 3.2. A translation surface of type 4 in the 3-dimensional Heisenberg

space H3 is a non-trivial minimal surface if and only if the surface can be

parametrized as

x(s, t) =

(

s+ t sin θ, t cos θ, f(s) + g(t)−
st cos θ

2

)

,

where

f(s)

=
c

cos θ

[

(a+ s cos θ)
√

1 + (a+s cos θ)2+ln(a+ s cos θ +
√

1 + (a+ s cos θ)2)
]

+ sin θ(as+
1

2
cos θs2 + d)

and g(t) = −at+ b with a, b, c, d ∈ R.

4. Minimal translation surfaces of type 2 and type 5

Let Σ2 be a translation surface of type 2 in the 3-dimensional Heisenberg
space H3. Then, Σ2 is parametrized by

(4.1) x(s, t) =

(

s+ g(t), cos θt, f(s) + sin θt+
st cos θ

2

)

.
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It follows that we have

xs = e1 + (f ′(s) + t cos θ)e3,

xt = g′(t)e1 + cos θe2 +

(

1

2
cos θg′(t)t−

1

2
cos θg(t) + sin θ

)

e3

and the unit normal vector U is

U = w−1/2 (− cos θ(f ′(s) + t cos θ)e1

+

[

g′(t)(f ′(s) + cos θt)−
1

2
cos θg′(t)t+

1

2
cos θg(t)−sin θ

]

e2 + cos θe3

)

.

On the other hand, the coefficients of the first fundamental form of Σ2 are
given by

E = 1 + (f ′(s) + t cos θ)2,

F = g′(t) + (f ′(s) + cos θt)

(

1

2
cos θg′(t)t−

1

2
cos θg(t) + sin θ

)

,

G = g′(t)
2
+ 1 +

cos2 θ

4
(g′(t)t− g(t))2 + sin θ cos θ(g′(t)t− g(t)).

By a straightforward calculation, we obtain

▽̃xs
xs = − (f ′(s) + t cos θ)e2 + f ′′(s)e3,

▽̃xs
xt =

1

2
cos θ(f ′(s) + t cos θ)e1 −

1

2

(

g′(t)(f ′(s) + cos θt) +
1

2
cos θg′(t)t

−
1

2
cos θg(t) + sin θ

)

e2 +
1

2
cos θe3,

▽̃xt
xt =

(

g′′(t) + cos θ

[

1

2
cos θg′(t)t−

1

2
cos θg(t) + sin θ

])

e1

− g′(t)

(

1

2
cos θg′(t)t−

1

2
cos θg(t) + sin θ

)

e2 +
1

2
cos θg′′(t)te3.

Using the data described above, we can calculate the coefficients of the second
fundamental form of Σ2 and obtain also the mean curvature H as follows:

(4.2) H =
1

8
w−3/2 cos θ

(

T0f
′′(s) + T1f

′(s) + T2f
′(s)

2
+ T3f

′(s)
3
+ T4

)

,

where

T0 = 4g′(t)
2
+ 4 + cos2 θ(g′(t)t− g(t))2 + 4 sin θ cos θ(g′(t)t− g(t)) = 4G,

T1 = −4g′′(t)− 4 sin θ cos θ + 2 cos2 θg(t)− 2 cos2 θg′(t)t− 8 cos2 θt2g′′(t),

T2 = −10 cos θg′′(t)t,

T3 = −4g′′(t),

T4 = −4 sin θ cos2 θt+ 2 cos3 θg(t)t− 2 cos3 θg′(t)t2 − 4 cos θg′(t)

− 2 cos θg′′(t)t− 2 cos3 θt3g′′(t).
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If cos θ = 0, then H = 0, that is, Σ2 is an open part of a plane (trivial
minimal surface).

Suppose that the translation surface Σ2 of type 2 is non-trivial minimal.
Then from (4.2) we have

(4.3) T0f
′′(s) + T1f

′(s) + T2f
′(s)

2
+ T3f

′(s)
3
+ T4 = 0.

Since T0 = cos2 θ(g′(t)t − g(t) + 2 tan θ)2 + 4(g′(t)
2
+ cos2 θ) 6= 0, we divide

(4.3) by T0 and take the derivatives with respect to s and t, respectively. We
obtain

d

dt

(

T1

T0

)

f ′′(s) + 2
d

dt

(

T2

T0

)

f ′(s)f ′′(s) + 3
d

dt

(

T3

T0

)

f ′(s)
2
f ′′(s) = 0.

The case f ′′(s) = 0 will be treated separately. From now on, let us suppose
that f ′′(s) 6= 0 on an open interval. Dividing by f ′′(s) and differentiating the
above equation with respect to s twice, we can obtain

d

dt

(

T1

T0

)

= 0,
d

dt

(

T2

T0

)

= 0,
d

dt

(

T3

T0

)

= 0.

By using the previous equation and the relation of T2 and T3, we show that
g′′(t) = 0, that is, g(t) = at+ b (a, b ∈ R). Substituting it in (4.3), one obtain

f(s) =
a cos θ

2(a2 + 1 + 2 sin2 θ)
s2 + cs+ d,

where c, d ∈ R.
Now, we consider f ′′(s) = 0. Then, f(s) = as+ b (a, b ∈ R). It follows that

equation (4.3) becomes

[

(2a+ cos θt)(1 + (cos θt+ a)2)
]

g′′(t) +
[

2 cos θ + t(a cos2 θ + cos3 θt)
]

g′(t)

− (a cos2 θ + cos3 θt)g(t) + 2 sin θ cos θ + 2 sin θ cos2 θt = 0.

Denote p(t) = (2a + cos θt)g(t). The above equation can be rewritten as the
form:

p′′(t)−
cos θ(a+ cos θt)

1 + (a+ cos θ)2
p′(t) =

−2 sin θ cos θ − 22 sin θ cos2 θt

1 + (a+ cos θ)2
,

which has the solution

p(t)

=
c1

2

(

(a+ cos θt)
√

1 + (a+ cos θt)2 + ln(a+ cos θt+
√

1 + (a+ cos θt)2)
)

+ 2 sin θt+ c2,
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where c1, c2 ∈ R. Thus, a function g(t) is given by

(4.4)

g(t) =
c1

2(2a+ cos θt)

(

(a+ cos θt)
√

1 + (a+ cos θt)2

+ ln(a+ cos θt+
√

1 + (a+ cos θt)2)
)

+
2 sin θt

2a+ cos θt
+

c2

2a+ cos θt
,

Consequently, we have the following:

Theorem 4.1. A translation surface of type 2 in the 3-dimensional Heisenberg

space H3 is a non-trivial minimal surface if and only if the surface can be

parametrized as

x(s, t) =

(

s+ g(t), cos θt, f(s) + sin θt+
st cos θ

2

)

,

where

(i) either f(s) = a cos θ
2(a2+1+2 sin2 θ)

s2+cs+d and g(t) = at+b with a, b, c, d ∈ R,

(ii) or f(s) = as+ b and g(t) is given by (4.4) with a, b ∈ R.

Let Σ5 be a translation surface of type 5 in the 3-dimensional Heisenberg
space H3. Then, Σ5 is parametrized by

(4.5) x(s, t) =

(

s+ g(t), cos θt, f(s) + sin θt−
st cos θ

2

)

.

In this case, by straightforward computation the mean curvature is given by

H =
1

8
w−3/2 cos θ

(

P0f
′′(s) + P1f

′(s) + P2f
′(s)

2
+ P3f

′(s)
3
+ P4

)

,

where

P0 = 4g′(t)
2
+ 4 + cos2 θ(tg′(t)− g(t))2 + 4 sin θ cos θ(tg′(t)− g(t))

− 4 cos2 θs(tg′(t)− g(t))− 8 sin θ cos θs+ 4 cos2 θs2,

P1 = −4g′′(t) + 2 cos2 θ(tg′(t)− g(t))− 4 cos2 θs+ 4 sin θ cos θ,

P2 = 2 cos θg′′(t)t,

P3 = −4g′′(t),

P4 = 2 cos θ(g′′(t)t+ 2g′(t)).

If Σ5 is a non-trivial minimal translation surface, then it satisfies the equation

(4.6) P0f
′′(s) + P1f

′(s) + P2f
′(s)

2
+ P3f

′(s)
3
+ P4 = 0.

Differentiating (4.6) with respect to s, we have
(4.7)

P0f
′′′(s)+((P0)s + P1) f

′′(s)+(P1)sf
′(s)+2P2f

′(s)f ′′(s)+3P3f
′(s)

2
f ′′(s) = 0.
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With respect to the surface Σ5 of type 5, equation (4.7) is expressed as a very
complicated ordinary differential equation. So, we give examples of non-trivial
minimal translation surfaces by distinguishing some special cases:

1. If f is a constant function, then equation (4.6) leads to g′′(t)t+2g′(t) = 0.
It follows that g(t) = b or g(t) = c

t + d (b, c, d ∈ R).

2. Assume f ′′(s) = 0. Then, from (4.7) (P1)sf
′(s) = 0, which implies

f ′(s) = 0. This case is contained in the previous one.
3. If g is a constant function, that is, g(t) = a (a ∈ R), then, equation (4.6)

writes as
(

cos2 θ(2s+ a)2 − 4 sin θ cos θ(2s+ a) + 4
)

f ′′(s)

+ (4 sin θ cos θ − 2 cos2 θa− 4 cos2 θs)f ′(s) = 0.

In this case, we have f(s) = constant or

(4.8)
f(s) =

b cos θ

4

(

(2s+ a− 2 tan θ)
√

(2s+ a− 2 tan θ)2 + 4

+4 ln(2s+ a− 2 tan θ +
√

(2s+ a− 2 tan θ)2 + 4) + c
)

,

where b and c are constants of integration.
4. Suppose that g′′(t) = 0, that is, g(t) = at + b (a, b ∈ R). In this case,

from (4.6) we obtain the following differential equation
(

4a2 + 4 + cos2 θ(2s+ b)2 − 4 sin θ cos θ(2s+ b)
)

f ′′(s)

+ (−2 cos2 θb− 4 cos2 θs+ 4 sin θ cos θ)f ′(s) + 4a cos θ = 0

with the general solution
(4.9)

f(s) =−
a cos θ

a2 + cos2 θ
s2 −

a

a2 + cos2 θ
(b cos θ + 2 sin θ)s+ c1

+
c2(cos θ(2s+ b)− 2 sin θ)

2 cos θ

√

[cos θ(2s+ b)− 2 sin θ]2 + 4(a2 + cos2 θ)

+
2c2(a

2 + cos2 θ)

cos θ
ln (cos θ(2s+ b)− 2 sin θ

+
√

[cos θ(2s+ b)− 2 sin θ]2 + 4(a2 + cos2 θ)
)

,

where c1 and c2 are constants of integration.

Proposition 4.2. Examples of non-trivial minimal translation surfaces of type

5 in the 3-dimensional Heisenberg group are the surfaces whose parametrization

is

x(s, t) =

(

s+ g(t), cos θt, f(s) + sin θt−
st cos θ

2

)

given by

(1) f(s) = a and g(t) = b.

(2) f(s) = a and g(t) = b
t + c.

(3) g(t) = a and f(s) is given by (4.8).



1340 D. W. YOON, C. W. LEE, AND M. K. KARACAN

(4) g(t) = at+ b and f(s) is given by (4.9),
where a, b, c ∈ R.

5. Minimal translation surfaces of type 3 and type 6

Let Σ3 be a translation surface of type 3 in the 3-dimensional Heisenberg
space H3. Then, Σ3 is parametrized by

(5.1) x(s, t) =

(

cos θt, s+ g(t), f(s) + sin θt−
st cos θ

2

)

.

It follows that we have

xs = e2 + (f ′(s)− t cos θ)e3,

xt = cos θe1 + g′(t)e2 +

(

−
1

2
cos θg′(t)t+

1

2
cos θg(t) + sin θ

)

e3,

which imply the coefficients of the first fundamental form of Σ3 are given by

E = 1 + (f ′(s)− t cos θ)2,

F = g′(t) + (f ′(s)− cos θt)

(

−
1

2
cos θg′(t)t+

1

2
cos θg(t) + sin θ

)

,

G = g′(t)
2
+ 1 +

cos2 θ

4
(g′(t)t− g(t))2 + sin θ cos θ(g(t)− g′(t)t),

and the unit normal vector is given by

U =
1

2
w−1/2 ([−2g′(t)(f ′(s)− cos θt)− cos θg′(t)t+ cos θg(t) + 2 sin θ]e1

+2 cos θ(f ′(s)− t cos θ)e2 − 2 cos θe3) .

On the other hand, we obtain

▽̃xs
xs = (f ′(s)− t cos θ)e1 + f ′′(s)e3,

▽̃xs
xt =

1

2

(

g′(t)(f ′(s)− cos θt)−
1

2
cos θg′(t)t+

1

2
cos θg(t) + sin θ

)

e1

−
1

2
cos θ(f ′(s)− t cos θ)e2 −

1

2
cos θe3,

▽̃xt
xt = g′(t)

(

−
1

2
cos θg′(t)t+

1

2
cos θg(t) + sin θ

)

e1

+

(

g′′(t)− cos θ

(

−
1

2
cos θg′(t)t+

1

2
cos θg(t) + sin θ

))

e2

−
1

2
cos θg′′(t)te3.

Using the data described above, we get the mean curvature H as

(5.2) H =
1

8
w−3/2 cos θ

[

Q0f
′′(s) +Q1f

′(s) +Q2f
′(s)

2
+Q3f

′(s)
3
+Q4

]

,
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where

Q0 = −[4g′(t)
2
+ 4 + cos2 θ(g′(t)t− g(t))2 − 4 sin θ cos θ(g′(t)t− g(t))]

= −4G,

Q1 = 4g′′(t)− 4 sin θ cos θ − 2 cos2 θg(t) + 2 cos2 θg′(t)t+ 8 cos2 θt2g′′(t)

Q2 = −10 cosθg′′(t)t,

Q3 = 4g′′(t),

Q4 = −4 sin θ cos2 θt− 2 cos3 θg(t)t+ 2 cos3 θg′(t)t2 + 4 cos θg′(t)

+ 2 cos θg′′(t)t+ 2 cos3 θt3g′′(t).

If cos θ = 0, then H = 0, that is, Σ is an open part of a plane (trivial minimal
surface).

Suppose that the translation surface Σ of type 3 is non-trivial minimal. Then
from (5.2) we have

Q0f
′′(s) +Q1f

′(s) +Q2f
′(s)

2
+Q3f

′(s)
3
+Q4 = 0.

Using the same algebraic techniques as in the case of surfaces of type 2, we get:

Theorem 5.1. A translation surface of type 3 in the 3-dimensional Heisenberg

space H3 is a non-trivial minimal surface if and only if the surface can be

parametrized as

x(s, t) =

(

cos θt, s+ g(t), f(s) + sin θt−
st cos θ

2

)

,

where

(i) either f(s) = a cos θ
2(a2+1+2 sin2 θ)

s2+ cs+d and g(t) = −at+ b with a, b, c, d ∈

R,

(ii) or f(s) = as+ b and

g(t) =
c

2(2a− cos θt)

[

(a− cos θt)
√

1 + (a− cos θt)2

+ ln(a− cos θt+
√

1 + (a− cos θt)2)
]

+
2 sin θt

2a− cos θt
+

d

2a− cos θt
,

where a, b, c, d ∈ R.

Let Σ6 be a translation surface of type 6 in the 3-dimensional Heisenberg
space H3. Then, Σ6 is parametrized by

(5.3) x(s, t) =

(

cos θt, s+ g(t), f(s) + sin θt+
st cos θ

2

)

.

If Σ6 is a non-trivial minimal translation surface, then it satisfies the equation

(5.4) R0f
′′(s) +R1f

′(s) + P2f
′(s)

2
− P3f

′(s)
3
+ P4 = 0,



1342 D. W. YOON, C. W. LEE, AND M. K. KARACAN

where

R0 = −4g′(t)
2
− 4− cos2 θ(tg′(t)− g(t))2 + 4 sin θ cos θ(tg′(t)− g(t))

+ 4 cos2 θs(tg′(t)− g(t))− 8 sin θ cos θs− 4 cos2 θs2,

R1 = 4g′′(t)− 2 cos2 θ(tg′(t)− g(t)) + 4 cos2 θs+ 4 sin θ cos θ.

Applying the same method as in the case of surfaces of type 5, we can obtain
the following:

Proposition 5.2. Examples of non-trivial minimal translation surfaces of type

6 in the 3-dimensional Heisenberg group are the surfaces whose parametrization

is

x(s, t) =

(

cos θt, s+ g(t), f(s) + sin θt+
st cos θ

2

)

given by

(1) f(s) = a and g(t) = b.

(2) f(s) = a and g(t) = b
t + c.

(3) g(t) = a and

f(s) =
b cos θ

4

(

(2s+ a− 2 tan θ)
√

(2s+ a− 2 tan θ)2 + 4

+4 ln(2s+ a− 2 tan θ +
√

(2s+ a− 2 tan θ)2 + 4) + c
)

.

(4) g(t) = at+ b and

f(s) =
a cos θ

a2 + cos2 θ
s2 −

a

a2 + cos2 θ
(b cos θ + 2 sin θ)s+ c1

+
c2(cos θ(2s+ b)− 2 sin θ)

2 cos θ

√

[cos θ(2s+ b)− 2 sin θ]2 + 4(a2 + cos2 θ)

+
2c2(a

2 + cos2 θ)

cos θ
ln (cos θ(2s+ b)− 2 sin θ

+
√

[cos θ(2s+ b)− 2 sin θ]2 + 4(a2 + cos2 θ)
)

,

where a, b, c, c1, c2 ∈ R.

Remark 5.3. There are infinite numbers of minimal surfaces for every θ ∈ R.
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