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ON SOME MODULAR EQUATIONS OF DEGREE 5 AND

THEIR APPLICATIONS

Dae Hyun Paek and Jinhee Yi

Abstract. We first derive several modular equations of degree 5 and
present their concise proofs based on algebraic computations. We then
establish explicit relations and formulas for some parameterizations for
the theta functions ϕ and ψ by using the derived modular equations. In
addition, we find specific values of the parameterizations and evaluate
some numerical values of the Rogers-Ramanujan continued fraction.

1. Introduction

We begin this section by introducing Ramanujan’s definition of his general
theta function. For |ab| < 1, define

f(a, b) :=

∞
∑

n=−∞

an(n+1)/2bn(n−1)/2.

Note that two special cases of f(a, b) are defined by, for |q| < 1,

ϕ(q) := f(q, q) =

∞
∑

n=−∞

qn
2

= (−q; q2)2∞(q2; q2)∞

and

ψ(q) := f(q, q3) =

∞
∑

n=0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

,

where

(a; q)∞ :=

∞
∏

n=0

(1− aqn).
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Let a, b, and c be arbitrary complex numbers except that c cannot be a non-
positive integer. Then, for |z| < 1, the Gaussian or ordinary hypergeometric
function 2F1(a, b; c; z) is defined by

2F1(a, b; c; z) :=

∞
∑

n=0

(a)n(b)n
(c)nn!

zn,

where (a)0 := 1 and (a)n := a(a + 1)(a + 2) · · · (a + n − 1) for each positive
integer n.

Now the complete elliptic integral of the first kind K(k) is defined by

(1.1) K(k) :=

∫ π/2

0

dθ
√

1− k2 sin2 θ
=
π

2
2F1

(

1
2 ,

1
2 ; 1; k

2
)

=
π

2
ϕ2
(

e−π
K′

K

)

,

where 0 < k < 1, K ′ = K(k′), and k′ =
√
1− k2. The number k is called the

modulus of K and k′ is called the complementary modulus.
Let K, K ′, L, and L′ denote complete elliptic integrals of the first kind

associated with the moduli k, k′, l, and l′, respectively, where 0 < k < 1 and
0 < l < 1. Suppose that

(1.2)
L′

L
= n

K ′

K

holds for some positive integer n. A relation between k and l induced by (1.2)
is called a modular equation of degree n.

If we set

q = exp

(

−πK
′

K

)

and q′ = exp

(

−πL
′

L

)

,

we see that (1.2) is equivalent to the relation qn = q′. Thus, a modular equation
can be viewed as an identity involving theta functions at the arguments q and
qn.

Note that the definition of a modular equation mentioned above is the one
used by Ramanujan, but we emphasize that there are several definitions of a
modular equation in the literature. For example, refer the books by R. A.
Rankin in [7] and B. Schoeneberg in [8] for other definitions of a modular
equation. Following Ramanujan, set α = k2 and β = l2, then we say that β
has degree n over α. By the relationship between complete elliptic integrals of
the first kind and hypergeometric function, we have

n
2F1

(

1
2 ,

1
2 ; 1; 1− α

)

2F1

(

1
2 ,

1
2 ; 1;α

) =
2F1

(

1
2 ,

1
2 ; 1; 1− β

)

2F1

(

1
2 ,

1
2 ; 1;β

) .

Let zn = ϕ2(qn). Then the multiplier m for degree n is defined by

m :=
ϕ2(q)

ϕ2(qn)
=
z1

zn
.

Next we introduce the definitions of 4 parameterizations for the theta func-
tions ϕ and ψ from [9, 11, 13]. For any positive real numbers k and n, define
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hk,n by

(1.3) hk,n :=
ϕ(q)

k1/4ϕ(qk)
,

where q = e−π
√
n/k, define h′k,n by

(1.4) h′k,n :=
ϕ(−q)

k1/4ϕ(−qk) ,

where q = e−2π
√
n/k, define lk,n by

(1.5) lk,n :=
ψ(−q)

k1/4q(k−1)/8ψ(−qk) ,

where q = e−π
√
n/k, define l′k,n by

(1.6) l′k,n :=
ψ(q)

k1/4q(k−1)/8ψ(qk)
,

where q = e−π
√
n/k.

Moreover, in [9, 11, 13], several new modular equations for the theta func-
tions were derived, some explicit relations and formulas for the parameteriza-
tions were offered, and some values of the parameterizations were determined.
Whereas, in [6, 12], some modular equations of degrees 3 and 9 for the theta
functions ϕ and ψ were derived in order to establish explicit relations and for-
mulas for the parameterizations for hk,n, h

′
k,n, lk,n, and l′k,n and show some

applications of the modular equations to evaluations of the cubic continued
fraction and the theta function ψ.

In this paper, we derive some modular equations of degree 5 for the theta
functions ϕ and ψ and present their concise proofs based on algebraic com-
putations as in [6, 12]. We also find explicit relations and formulas for the
corresponding parameterizations, and evaluate some numerical values of h5,n,
h′5,n, l5,n, and l

′
5,n by employing the relations and formulas established earlier.

Moreover, we use these values to evaluate some specific values of the Rogers-
Ramanujan continued fraction.

2. Preliminary results

In this section, we introduce basic theta function identities that will play key
roles in deriving some modular equations. Let k be the modulus as in (1.1).
Set x = k2 and also set

(2.1) k2 = x = 1− ϕ4(−q)
ϕ4(q)

.

Then

(2.2) ϕ2(q) = 2F1

(

1
2 ,

1
2 ; 1;x

)

=: z,
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where

(2.3) q = e−y := exp

(

−π 2F1

(

1
2 ,

1
2 ; 1; 1− x

)

2F1

(

1
2 ,

1
2 ; 1;x

)

)

= exp

(

−πK(k′)

K(k)

)

.

Lemma 2.1 ([1], Theorem 5.4.1). If x, q, and z are related by (2.1), (2.2),
and (2.3), then

(i) ϕ(q) =
√
z,

(ii) ϕ(−q) = √
z(1 − x)1/4,

(iii) ϕ(−q2) = √
z(1− x)1/8.

Lemma 2.2 ([1], Theorem 5.4.2). If x, q, and z are related by (2.1), (2.2),
and (2.3), then

(i) ψ(q) =

√

1

2
z

(

x

q

)1/8

,

(ii) ψ(−q) =
√

1

2
z

(

x(1 − x)

q

)1/8

,

(iii) ψ(q2) =
1

2

√
z

(

x

q

)1/4

.

Lemma 2.3 ([2], Entry 13, Chapter 19). Let β be the fifth degree and m = z1
z5
.

Then

(i)

(

β

α

)1/4

+

(

1− β

1− α

)1/4

−
(

β(1− β)

α(1 − α)

)1/4

= m,

(ii)

(

α

β

)1/4

+

(

1− α

1− β

)1/4

−
(

α(1 − α)

β(1 − β)

)1/4

=
5

m
.

Lemma 2.4 ([11], Theorem 2.2). For any positive real number k,

hk,1 = 1.

Lemma 2.5 ([13], Theorem 2.3). For any positive real number k,

lk,1 = 1.

We recall that the Rogers-Ramanujan continued fraction R(q) is defined by,
for |q| < 1,

R(q) :=
q1/5

1 +

q

1 +

q2

1 +

q3

1 + · · · = q1/5
f(−q,−q4)
f(−q2,−q3) .

We also define

S(q) := −R(−q).
The following results show general formulas for R(e−2π

√
n/5) and S(e−π

√
n/5)

in terms of hk,n and lk,n.

Lemma 2.6 ([13], Theorem 6.1). For any real number n, we have
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(i)
1

R5(e−2π
√
n/5 )

− 11−R5(e−2π
√
n/5 ) = 5

√
5h25,nl

4
5,n,

(ii)
1

S5(e−π
√
n/5 )

+ 11− S5(e−π
√
n/5 ) = 5

√
5h45,nl

2
5,n.

3. Modular equations

In [3], there are Ramanujan’s 23 eta function identities, which are certain
types of modular equations. In this section, we derive some modular equations
of degree 5 and present their proofs based on concise algebraic computations
by employing the theory of theta functions in the spirit of Ramanujan. In
addition, we establish some explicit relations and formulas for h5,n, h

′
5,n, l5,n,

and l′5,n by employing these modular equations.

Theorem 3.1. If P = ϕ(q)
ϕ(q5) and Q = ϕ(−q)

ϕ(−q5) , then

(3.1)
P

Q
+
Q

P
+ 4 = PQ+

5

PQ
.

Proof. By Lemma 2.1(i) and (ii),

P =

√

z1

z5
and Q =

√

z1

z5

(

1− α

1− β

)1/4

,

where β has degree 5 over α. Thus

Q

P
=

(

1− α

1− β

)1/4

.

By Lemma 2.3,
(

β

α

)1/4

+
P

Q
−
(

β

α

)1/4
P

Q
= P 2

and
(

α

β

)1/4

+
Q

P
−
(

α

β

)1/4
Q

P
=

5

P 2
.

Combining and rewriting above two equations in terms of P and Q, we deduce
that

(

1− P

Q

)(

1− Q

P

)

=

(

5

P
−Q

)(

P − 1

Q

)

.

This is equivalent to (3.1) and hence we complete the proof. �

Using the definitions of hk,n and h′k,n, we have the following:

Corollary 3.2. For every positive real number n, we have

(3.2)
√
5

(

h5,nh
′
5,n/4 +

1

h5,nh
′
5,n/4

)

=
h5,n

h′5,n/4
+
h′5,n/4

h5,n
+ 4.
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Proof. Letting q = e−π
√
n/5 in (1.3) and (1.4), we find that P = 51/4 h5,n and

Q = 51/4 h′5,n/4 in Theorem 3.1. Rewriting (3.1) in terms of h5,n and h′5,n/4,

we complete the proof. �

Theorem 3.3. If P = ϕ(q)
ϕ(q5) and Q = ϕ(−q2)

ϕ(−q10) , then

(3.3)

(

P

Q

)2

+

(

Q

P

)2

+ 4 = Q2 +
5

Q2
.

Proof. By Lemma 2.1(i) and (iii),

P =

√

z1

z5
and Q =

√

z1

z5

(

1− α

1− β

)1/8

,

where β has degree 5 over α. Thus

Q2

P 2
=

(

1− α

1− β

)1/4

.

By Lemma 2.3,
(

β

α

)1/4

+
P 2

Q2
−
(

β

α

)1/4
P 2

Q2
= P 2

and
(

α

β

)1/4

+
Q2

P 2
−
(

α

β

)1/4
Q2

P 2
=

5

P 2
.

Combining and rewriting above two equations in terms of P and Q as in the
proof of Theorem 3.1, we complete the proof. �

Using the definitions of hk,n and h′k,n, we have the following:

Corollary 3.4. For every positive real number n, we have

(3.4)
√
5

(

h′25,n +
1

h′25,n

)

=

(

h5,n

h′5,n

)2

+

(

h′5,n

h5,n

)2

+ 4.

Proof. Letting q = e−π
√
n/5 in (1.3) and (1.4), we find that P = 51/4 h5,n and

Q = 51/4 h′5,n in Theorem 3.3. Rewriting (3.3) in terms of h5,n and h′5,n, we
complete the proof. �

Theorem 3.5. If P = ϕ(q)
ϕ(q5) and Q = ψ(q)

q1/2ψ(q5)
, then

(3.5)

(

P

Q

)2

+

(

Q

P

)2

+ 4 = Q2 +
5

Q2
.

Proof. By Lemmas 2.1(i) and 2.2(i),

P =

√

z1

z5
and Q =

√

z1

z5

(

α

β

)1/8

,
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where β has degree 5 over α. Thus

Q2

P 2
=

(

α

β

)1/4

.

By Lemma 2.3,

P 2

Q2
+

(

1− β

1− α

)1/4

− P 2

Q2

(

1− β

1− α

)1/4

= P 2

and
Q2

P 2
+

(

1− α

1− β

)1/4

− Q2

P 2

(

1− α

1− β

)1/4

=
5

P 2
.

Combining and rewriting above two equations in terms of P and Q as in the
proof of Theorem 3.1, we complete the proof. �

Using the definitions of hk,n and l′k,n, we have the following:

Corollary 3.6. For every positive real number n, we have

(3.6)
√
5

(

l′25,n +
1

l′25,n

)

=

(

h5,n

l′5,n

)2

+

(

l′5,n

h5,n

)2

+ 4.

Proof. Letting q = e−π
√
n/5 in (1.3) and (1.6), we find that P = 51/4 h5,n and

Q = 51/4 l′5,n in Theorem 3.5. Rewriting (3.5) in terms of h5,n and l′5,n, we
complete the proof. �

Theorem 3.7. If P = ψ(q)
q1/2ψ(q5)

and Q = ψ(q2)
qψ(q10) , then

(3.7)

(

P

Q

)2

+

(

Q

P

)2

+ 4 = P 2 +
5

P 2
.

Proof. By Lemma 2.2(i) and (iii),

P =

√

z1

z5

(

α

β

)1/8

and Q =

√

z1

z5

(

α

β

)1/4

,

where β has degree 5 over α. Thus

Q2

P 2
=

(

α

β

)1/4

and
z1

z5
=
P 4

Q2
.

By Lemma 2.3,

P 2

Q2
+

(

1− β

1− α

)1/4

− P 2

Q2

(

1− β

1− α

)1/4

=
P 4

Q2

and
Q2

P 2
+

(

1− α

1− β

)1/4

− Q2

P 2

(

1− α

1− β

)1/4

=
5Q2

P 4
.

Combining and rewriting above two equations in terms of P and Q as in the
proof of Theorem 3.1, we complete the proof. �
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Using the definition of l′k,n, we have the following:

Corollary 3.8. For every positive real number n, we have

(3.8)
√
5

(

l′25,n +
1

l′25,n

)

=

(

l′5,n

l′5,4n

)2

+

(

l′5,4n

l′5,n

)2

+ 4.

Proof. Letting q = e−π
√
n/5 in (1.6), we find that P = 51/4 l′5,n and Q =

51/4 l′5,4n in Theorem 3.7. Rewriting (3.7) in terms of l′5,n and l′5,4n, we complete
the proof. �

Theorem 3.9. If P = ϕ(−q2)
ϕ(−q10) and Q = ψ(q)

q1/2ψ(q5)
, then

(3.9)
(

P 2 +Q2 − 5
)

(

1

P 2
+

1

Q2
− 1

)

= 1.

Proof. By Lemmas 2.1(iii) and 2.2(i),

P =

√

z1

z5

(

1− α

1− β

)1/8

and Q =

√

z1

z5

(

α

β

)1/8

,

where β has degree 5 over α. Let m =
z1

z5
. Then

(

1− α

1− β

)1/4

=
P 2

m
and

(

α

β

)1/4

=
Q2

m
.

By Lemma 2.3, we deduce that

1

P 2
+

1

Q2
− m

P 2Q2
= 1

and

P 2 +Q2 − P 2Q2

m
= 5.

Combining and rewriting these two equations in terms of P and Q, we complete
the proof. �

Using the definitions of h′k,n and l′k,n, we have the following:

Corollary 3.10. For every positive real number n, we have

(3.10)
(

h′25,n + l′25,n −
√
5
)

(

1

h′25,n
+

1

l′25,n
−
√
5

)

= 1.

Proof. Letting q = e−π
√
n/5 in (1.4) and (1.6), we find that P = 51/4 h′5,n and

Q = 51/4 l′5,n in Theorem 3.9. Rewriting (3.9) in terms of h′5,n and l′5,n, we
complete the proof. �
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Theorem 3.11. If P = ψ(q)

q1/2ψ(q5)
and Q = ψ(−q)

q1/2ψ(−q5) , then

(3.11)
(

P 2 −Q2 − 5
)

(

1

P 2
− 1

Q2
− 1

)

= 1.

Proof. By Lemma 2.2(i) and (ii),

P =

√

z1

z5

(

α

β

)1/8

and Q =

√

z1

z5

(

α(1− α)

β(1− β)

)1/8

,

where β has degree 5 over α. Let

m =
z1

z5
and T =

√

z1

z5

(

1− α

1− β

)1/4

.

Then
(

β

α

)1/4

=
m

P 2
,

(

1− β

1− α

)1/4

=

√
m

T
, and

(

β(1 − β)

α(1 − α)

)1/4

=
m

Q2
.

By Lemma 2.3, we deduce that

m

P 2
+

√
m

T
− m

Q2
= m

and
P 2

m
+

T√
m

− Q2

m
=

5

m
.

Combining and rewriting above two equations in terms of P andQ, we complete
the proof. �

Using the definitions of lk,n and l′k,n, we have the following:

Corollary 3.12. For every positive real number n, we have

(3.12)
(

l′25,n − l25,n −
√
5
)

(

1

l′25,n
− 1

l25,n
−
√
5

)

= 1.

Proof. Letting q = e−π
√
n/5 in (1.5) and (1.6), we find that P = 51/4 l′5,n and

Q = 51/4 l5,n in Theorem 3.11. Rewriting (3.11) in terms of l5,n and l′5,n, we
complete the proof. �

4. Evaluations of h5,n, h
′

5,n
, l5,n, and l′

5,n

In this section, we evaluate some numerical values of h5,n, h
′
5,n, l5,n, and

l′5,n by using the explicit relations and formulas established in Section 3.
The following results exhibit a general method for evaluating the values of

l′5,4n for all positive integers n. We show the case when n = 1 and n = 2.

Theorem 4.1. We have

(i) l′5,1 =

√

1 +
√
5

2
+

√

1 +
√
5

2
,
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(ii) l′5,4 =
1 +

√
5

2
+

√

1 +
√
5

2
,

(iii) l′5,16 =

√

(3 + 2
√
5 )
(

(1 +
√
5 )a− 1

)

+
1

2
(3 +

√
5 )2
√

8a− 5 +
√
5 ,

where

a =
1 +

√
5

2
+

√

1 +
√
5

2
.

Proof. For (i), letting n = 1 in (3.6) and using h5,1 = 1 from Lemma 2.4, we
find that

l′45,1 − (1 +
√
5 ) l′25,1 + 1 = 0.

Solving for l′5,1 and using the fact that l′5,1 > 1, we complete the proof.
For (ii), letting n = 1 in (3.8) and putting the value of l′5,1 from the previous

result of (i), and using the fact that l′5,4 > 1, we deduce that

(3 +
√
5 ) l′25,4 − 11− 5

√
5− (6 + 2

√
5 )

√

2 +
√
5 = 0.

Solving for l′5,4 and using the fact that l′5,4 > 1 again, we complete the proof.
For (iii), let n = 4 in (3.8), then we deduce that

l′45,16 − (
√
5 l′25,4 − 4 l′25,4 +

√
5 )l′25,16 + l′45,4 = 0.

Putting the value of l′5,4 from the previous result of (ii), solving for l′5,16, and
using the fact that l′5,16 > 1, we complete the proof. �

See Theorems 3.3(v) and 4.10(xi) in [13] for alternative proofs for Theorem
4.1(i) and (ii), respectively. By repeating the same argument as in the proof of
Theorem 4.1, we can find the values of l′5,4n for n = 3, 4, 5, . . . .

Theorem 4.2. We have

(i) l5,4 =

√

2(3 +
√
5 )(4a− 1 +

√
5 ) + (3 +

√
5 )2
√

8a− 5 +
√
5

2(1 +
√
5 )(

√
5 a− 1)

,

(ii) l5,16 =

√

√

√

√

√
5 b2 − 6b+

√
5 +

√

(
√
5 b2 − 2b+

√
5 )(

√
5 b2 − 6b+

√
5 )

2(
√
5 b− 1)

,

where

a =
1 +

√
5

2
+

√

1 +
√
5

2
,

and

b = (3 + 2
√
5 )
(

(1 +
√
5 )a− 1

)

+
1

2
(3 +

√
5 )2
√

8a− 5 +
√
5 .

Proof. For (i), let n = 4 in (3.12), then we deduce that

(
√
5 l′25,4 − 1) l45,4 − (

√
5 l′45,4 − 6 l′25,4 +

√
5 ) l25,4 − l′45,4 +

√
5 l′25,4 = 0.
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Putting the value of l′5,4 from Theorem 4.1(ii), solving for l5,4, and using the
fact that l5,4 has a real value greater than 1, we complete the proof.

For (ii), let n = 16 in (3.12) and replace l′5,4, l5,4 by l′5,16, l5,16, respectively.
Then the rest of the proof is similar to that of Part (i). �

Theorem 4.3. We have

h′5,1 =

√

√

√

√1 +
√
5

2
−

√

1 +
√
5

2
.

Proof. Letting n = 1 in (3.4) and using the fact that h5,1 = 1 from Lemma 2.4,
we find that

(
√
5− 1)h′45,1 − 4 h′25,1 +

√
5− 1 = 0.

Solving for h′5,1 and using the fact that 0 < h′5,1 < 1, we complete the proof. �

See Theorem 4.16 in [11] for an alternative proof for Theorem 4.3.

Theorem 4.4. We have

(i) h5,4 =
2
√
2a

(3 +
√
2 +

√
5 +

√
10 )(a−

√
5 )
,

(ii) h5,16 =

√

√

√

√

√
5 b2 − 4b+

√
5 +

√

(
√
5 b2 − 2b+

√
5 )(

√
5 b2 − 6b+

√
5 )

2
,

where

a =
1 +

√
5

2
+

√

1 +
√
5

2

and

b = (3 + 2
√
5 )
(

(1 +
√
5 )a− 1

)

+
1

2
(3 +

√
5 )2
√

8a− 5 +
√
5 .

Proof. For (i), let n = 4 in (3.2), then we find that

(
√
5h′25,1 − 1)h25,4 − 4h′5,1h5,4 − h′25,1 +

√
5 = 0.

Note that

1 +
√
5

2
−

√

1 +
√
5

2
=





1 +
√
5

2
+

√

1 +
√
5

2





−1

.

Putting the value of h′5,1 from Theorem 4.3, solving for h5,4, and using the fact
that h5,4 > 0, we complete the proof.

For (ii), let n = 16 in (3.6), then we deduce that

h45,16 − (
√
5 l′45,16 − 4 l′25,16 +

√
5 )h25,16 + l′45,16 = 0.

Putting the value of l′5,16 from Theorem 4.1(iii), solving for h5,16, and using
the fact that 0 < h5,16 < 1, we complete the proof. �
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5. Evaluations of R(q) and S(q)

We now apply specific values of h5,n and l5,n to evaluations of the Rogers-
Ramanujan continued fraction. In his second letter to G. H. Hardy (see [5]
for more details), Ramanujan gave the first non-elementary evaluations of R(q)
and S(q), namely,

R(e−2π) =

√

5 +
√
5

2
−

√
5 + 1

2

and

S(e−π) =

√

5−
√
5

2
−

√
5− 1

2
.

Berndt, Chan, and Zhang [4] derived formulas for the explicit evaluations of

R(e−2π
√
n) and S(e−π

√
n) for positive rational numbers n in terms of Raman-

ujan-Weber class invariants. In [10], Yi established some formulas and de-

termined values for R(e−2π
√
n) and S(e−π

√
n) by using modular equations of

degrees 5 or 25. She provided simple proofs for some known values of R(q) and
also found some new values of R(q). We now consider the numerical values of

R(e−2π
√
n/5 ) and S(e−π

√
n/5 ) where n is a positive integer. In [9], the values

of R(e−2π
√
n/5 ) were evaluated when n = 1, 2, 3, 4, 7, 8, 9 and the values of

S(e−π
√
n/5 ) were evaluated when n = 1, 3, 7, 9. We end this section by eval-

uating the numerical values of R(e−2π
√
n/5 ) and S(e−π

√
n/5 ) for n = 4 and

n = 16.

Theorem 5.1. We have

(i) R5(e−4π/
√
5 ) =

1

2

(

−11− 5
√
5 b+

√

5(25b2 + 22
√
5 b+ 25)

)

,

(ii) S5(e−2π/
√
5 ) =

1

2

(

11− 5
√
5 c+

√

5(25c2 − 22
√
5 c+ 25)

)

,

where

a =
1 +

√
5

2
+

√

1 +
√
5

2
,

b = 2a





(3 +
√
5 )
(

2(4a+ 1−
√
5 ) + (3 +

√
5 )
√

8a− 5 +
√
5
)

(1 +
√
5 )(3 +

√
2 +

√
5 +

√
10 )(

√
5 a− 1)(a−

√
5 )





2

,

c =
32(3 +

√
5 )a2

(

2(4a+ 1−
√
5 ) + (3 +

√
5 )
√

8a− 5 +
√
5
)

(1 +
√
5 )(

√
5 a− 1)

(

(3 +
√
2 +

√
5 +

√
10 )(a−

√
5 )
)4 .

Proof. The results follow directly form Lemma 2.6 and Theorems 4.2(i) and
4.4(i). �

See [11] for an alternative proof of Theorem 5.1(i).
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Theorem 5.2. We have

(i) R5(e−8π/
√
5 ) =

1

2

(

−11− 5
√
5 c+

√

5(25c2 + 22
√
5 c+ 25)

)

,

(ii) S5(e−4π/
√
5 ) =

1

2

(

11− 5
√
5 d+

√

5(25d2 − 22
√
5 d+ 25)

)

,

where

a =
1 +

√
5

2
+

√

1 +
√
5

2
,

b = (3 + 2
√
5 )
(

(1 +
√
5 )a− 1

)

+
1

2
(3 +

√
5 )2
√

8a− 5 +
√
5,

c =
b2(

√
5 b2 − 6b+

√
5 )

(
√
5 b− 1)2

,

d =
8b4
√√

5 b2 − 6b+
√
5

(
√
5 b− 1)

(
√√

5 b2 − 2b+
√
5 +

√√
5 b2 − 6b+

√
5
)3 .

Proof. The results follow directly form Lemma 2.6 and Theorems 4.2(ii) and
4.4(ii). �
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