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ON SOME MODULAR EQUATIONS AND THEIR

APPLICATIONS II

Dae Hyun Paek and Jinhee Yi

Abstract. We first derive some modular equations of degrees 3 and 9
and present their concise proofs based on algebraic computations. We
then use these modular equations to establish explicit relations and for-
mulas for the parameterizations for the theta functions ϕ and ψ. In ad-
dition, we find specific values of the parameterizations to evaluate some
numerical values of the cubic continued fraction.

1. Introduction

We begin this section by introducing Ramanujan’s definition of his general
theta function. For |ab| < 1, define

f(a, b) :=

∞
∑

n=−∞

an(n+1)/2bn(n−1)/2.

Note that two special cases of f(a, b) are defined by, for |q| < 1,

ϕ(q) := f(q, q) =

∞
∑

n=−∞

qn
2

= (−q; q2)2∞(q2; q2)∞

and

ψ(q) := f(q, q3) =
∞
∑

n=0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

,

where

(a; q)∞ :=

∞
∏

n=0

(1− aqn).
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Let a, b, and c be arbitrary complex numbers except that c cannot be a non-
positive integer. Then, for |z| < 1, the Gaussian or ordinary hypergeometric
function 2F1(a, b; c; z) is defined by

2F1(a, b; c; z) :=

∞
∑

n=0

(a)n(b)n
(c)nn!

zn,

where (a)0 := 1 and (a)n := a(a + 1)(a + 2) · · · (a + n − 1) for each positive
integer n.

Now the complete elliptic integral of the first kind K(k) is defined by

(1.1) K(k) :=

∫ π/2

0

dθ
√

1− k2 sin2 θ
=
π

2
2F1

(

1
2 ,

1
2 ; 1; k

2
)

=
π

2
ϕ2
(

e−π
K′

K

)

,

where 0 < k < 1, K ′ = K(k′), and k′ =
√
1− k2. The number k is called the

modulus of K and k′ is called the complementary modulus.
Let K, K ′, L, and L′ denote complete elliptic integrals of the first kind

associated with the moduli k, k′, l, and l′, respectively, where 0 < k < 1 and
0 < l < 1. Suppose that

(1.2)
L′

L
= n

K ′

K

holds for some positive integer n. A relation between k and l induced by (1.2)
is called a modular equation of degree n.

If we set

q = exp

(

−πK
′

K

)

and q′ = exp

(

−πL
′

L

)

,

we see that (1.2) is equivalent to the relation qn = q′. Hence a modular equation
can be viewed as an identity involving theta functions at the arguments q and
qn.

Note that the definition of a modular equation mentioned above is the one
used by Ramanujan, but we emphasize that there are several definitions of a
modular equation in the literature. For example, refer the books by R. A.
Rankin in [5] and B. Schoeneberg in [6] for other definitions of a modular
equation. Following Ramanujan, set α = k2 and β = l2, then we say that β
has degree n over α. By the relationship between complete elliptic integrals of
the first kind and hypergeometric function, we have

n
2F1

(

1
2 ,

1
2 ; 1; 1− α

)

2F1

(

1
2 ,

1
2 ; 1;α

) =
2F1

(

1
2 ,

1
2 ; 1; 1− β

)

2F1

(

1
2 ,

1
2 ; 1;β

) .

Let zn = ϕ2(qn). Then the multiplier m for degree n is defined by

m :=
ϕ2(q)

ϕ2(qn)
=
z1

zn
.

Next we introduce the definitions of 4 parameterizations for the theta func-
tions ϕ and ψ from [7, 8, 10]. For any positive real numbers k and n, define



ON SOME MODULAR EQUATIONS AND THEIR APPLICATIONS II 1223

hk,n by

(1.3) hk,n :=
ϕ(q)

k1/4ϕ(qk)
,

where q = e−π
√
n/k, define h′k,n by

(1.4) h′k,n :=
ϕ(−q)

k1/4ϕ(−qk) ,

where q = e−2π
√
n/k, define lk,n by

(1.5) lk,n :=
ψ(−q)

k1/4q(k−1)/8ψ(−qk) ,

where q = e−π
√
n/k, define l′k,n by

(1.6) l′k,n :=
ψ(q)

k1/4q(k−1)/8ψ(qk)
,

where q = e−π
√
n/k.

In [7, 8, 10], several new modular equations for the theta functions were
derived, some explicit relations and formulas for the parameterizations were
offered, and some values of the parameterizations were determined. Moreover,
in [9], some new modular equations of degrees 3 and 9 for the theta functions
ϕ and ψ were derived in order to establish explicit relations and formulas for
the parameterizations for hk,n, h

′
k,n, lk,n, and l

′
k,n and show some applications

of those modular equations to evaluations of the cubic continued fraction.
In this paper, we further derive some more modular equations of degrees 3

and 9 for the theta functions ϕ and ψ and present their concise proofs based
on algebraic computations as in [9]. Furthermore, we find explicit relations
and formulas for the corresponding parameterizations, evaluate some numerical
values of hk,n, h

′
k,n, lk,n, and l′k,n for some positive real numbers k and n by

employing the relations and formulas established earlier, and evaluate some
numerical values of the cubic continued fraction.

2. Preliminary results

In this section, we introduce fundamental theta function identities that will
play key roles in deriving some modular equations. We also recall some useful
explicit relations for the parameterizations of hk,n, lk,n, and l

′
k,n for some pos-

itive real numbers k and n. Let k be the modulus as in (1.1). Set x = k2 and
also set

(2.1) k2 = x = 1− ϕ4(−q)
ϕ4(q)

.

Then

(2.2) ϕ2(q) = 2F1

(

1
2 ,

1
2 ; 1;x

)

=: z,
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where

(2.3) q = e−y := exp

(

−π 2F1

(

1
2 ,

1
2 ; 1; 1− x

)

2F1

(

1
2 ,

1
2 ; 1;x

)

)

= exp

(

−πK(k′)

K(k)

)

.

Lemma 2.1 ([1], Theorem 5.4.1). If x, q, and z are related by (2.1), (2.2),
and (2.3), then

(i) ϕ(q) =
√
z,

(ii) ϕ(−q) = √
z(1 − x)1/4.

Lemma 2.2 ([1], Theorem 5.4.2). If x, q, and z are related by (2.1), (2.2),
and (2.3), then

(i) ψ(q) =

√

1

2
z

(

x

q

)1/8

,

(ii) ψ(q2) =
1

2

√
z

(

x

q

)1/4

.

Lemma 2.3 ([2], Entry 1(ii), Chapter 20). For |q| < 1, we have

1 +
ψ(−q1/3)
q1/3ψ(−q3) =

(

1 +
ψ4(−q)
qψ4(−q3)

)1/3

.

Lemma 2.4 ([2], Entry 5, Chapter 19). Let β be the third degree and m = z1
z3
.

Then

(i)

√

β

α
+

√

1− β

1− α
−
√

β(1 − β)

α(1 − α)
= m2 ,

(ii)

√

α

β
+

√

1− α

1− β
−
√

α(1 − α)

β(1 − β)
=

(

3

m

)2

.

Lemma 2.5 ([2], Entry 3, Chapter 20). Let γ be the ninth degree and m = z1
z9
.

Then

(i)
(γ

α

)1/8

+

(

1− γ

1− α

)1/8

−
(

γ(1− γ)

α(1 − α)

)1/8

=
√
m ,

(ii)

(

α

γ

)1/8

+

(

1− α

1− γ

)1/8

−
(

α (1− α)

γ (1− γ)

)1/8

=
3√
m
.

Next two results will be useful in evaluating specific values of hk,n, h
′
k,n,

lk,n, and l
′
k,n.

Lemma 2.6 ([8], Theorem 2.2). For any positive real number k,

hk,1 = 1.

Lemma 2.7 ([10], Theorem 2.3). For any positive real number k,

lk,1 = 1.
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Lemma 2.8 ([9], Corollary 3.14). For every positive real number n, we have

(

l9,n − l′9,n +
√
3
)

(

1

l9,n
− 1

l′9,n
+
√
3

)

= 1.

We recall that the cubic continued fraction G(q) is defined by

G(q) :=
q1/3

1 +

q + q2

1 +

q2 + q4

1 +

q3 + q6

1 + · · · = q1/3
χ(−q)
χ3(−q3) ,

for |q| < 1, where χ(q) := (−q; q2)∞.
The following result exhibits some general formulas for the values of

G(e−π
√
n ) and G(−e−π

√
n ) in terms of l′3,n, l

′
9,n, and l9,n.

Lemma 2.9 ([10], Theorem 6.2). For any positive real number n, we have

(i) G(e−π
√
n ) =

1√
3 l′9,n − 1

,

(ii) G3(e−π
√
n/3 ) =

1

3 l′43,n − 1
,

(iii) G(−e−π
√
n ) =

−1√
3 l9,n + 1

.

Lemma 2.10 ([7], Lemma 6.3.6). We have

G(e−2π
√
n ) = −G(e−π

√
n )G(−e−π

√
n )

for any positive real number n.

3. Modular equations

Note that Ramanujan’s 23 eta function identities, which are certain types
of modular equations, are given in [3]. In this section, we derive some modular
equations of degrees 3 and 9 and present their proofs based on concise algebraic
computations. In addition, we establish some explicit relations and formulas
for hk,n, h

′
k,n, lk,n, and l

′
k,n by employing these modular equations.

Theorem 3.1. If P = ψ(q)
q1/4ψ(q3)

and Q = ψ(q2)
q1/2ψ(q6)

, then

(3.1) P 4 +
9

P 4
=

(

P

Q

)4

+

(

Q

P

)4

+ 8.

Proof. By Lemma 2.2,

P =

√

z1

z3

(

α

β

)1/8

and Q =

√

z1

z3

(

α

β

)1/4

,

where β has degree 3 over α. Thus

P 2

Q
=

√

z1

z3
and

Q

P
=

(

α

β

)1/8

.
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By Lemma 2.4,
(

P

Q

)4

+

√

1− β

1− α
−
(

P

Q

)4√

1− β

1− α
=
P 8

Q4

and
(

Q

P

)4

+

√

1− α

1− β
−
(

Q

P

)4√
1− α

1− β
=

9Q4

P 8
.

Combining and rearranging above two equations in terms of P and Q, we
deduce that

(

1− P 4

Q4

)(

1− Q4

P 4

)

=
(

P 4 − 1
)

(

9

P 4
− 1

)

,

which is equivalent to (3.1). Hence we complete the proof. �

Using the definition of l′k,n, we have the following:

Corollary 3.2. For every positive real number n, we have

(3.2) 3

(

l′43,n +
1

l′43,n

)

=

(

l′3,n

l′3,4n

)4

+

(

l′3,4n

l′3,n

)4

+ 8.

Proof. Letting q = e−π
√
n/3 in (1.6), we find that P = 31/4 l′3,n and Q =

31/4 l′3,4n in Theorem 3.1. Rewriting (3.1) in terms of l′3,n and l′3,4n, we complete
the proof. �

Theorem 3.3. If P = ϕ(q)
ϕ(q9) and Q = ψ(q2)

q2ψ(q18) , then

(3.3)
√

PQ+
3√
PQ

=

√

Q

P
+

√

P

Q
+ 2.

Proof. By Lemma 2.1,

P =

√

z1

z9
and Q =

√

z1

z9

(

α

γ

)1/4

,

where γ has degree 9 over α. Thus

Q

P
=

(

α

γ

)1/4

.

By Lemma 2.5,
√

P

Q
+

(

1− γ

1− α

)1/8

−
√

P

Q

(

1− γ

1− α

)1/8

= P

and
√

Q

P
+

(

1− α

1− γ

)1/8

−
√

Q

P

(

1− α

1− γ

)1/8

=
3

P
.
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Combining and rearranging above two equations in terms of P and Q, we
deduce that

(

1−
√

P

Q

)(

1−
√

Q

P

)

=

(

P −
√

P

Q

)(

3

P
−
√

Q

P

)

,

which is equivalent to (3.3). Hence we complete the proof. �

Using the definitions of hk,n and l′k,n, we have the following:

Corollary 3.4. For every positive real number n, we have

(3.4)
√
3





√

h9,nl
′
9,4n +

1
√

h9,nl
′
9,4n



 =

√

h9,n

l′9,4n
+

√

l′9,4n

h9,n
+ 2.

Proof. Letting q = e−π
√
n/9 in (1.3) and (1.6), we find that P =

√
3h9,n and

Q =
√
3 l′9,4n in Theorem 3.3. Rewriting (3.3) in terms of h9,n and l′9,4n, we

complete the proof. �

Theorem 3.5. If P = ψ(−q)
qψ(−q9) and Q = ψ(−q3)

q3ψ(−q27) , then

(3.5)

(

P + 3 +
3

P

)(

Q+ 3 +
3

Q

)

=

(

Q

P

)2

.

Proof. For simplicity, let A = qψ(−q9) and B = q3ψ(−q27). Then ψ(−q) = AP

and ψ(−q3) = BQ. Thus by Lemma 2.3,

P + 1 =

(

qB4Q4

A4
+ 1

)1/3

and Q+ 1 =

(

A4

qB4
+ 1

)1/3

.

Combining and rewriting above two equations in terms of P and Q, we deduce
that

(

(P + 1)3 − 1
) (

(Q + 1)3 − 1
)

= Q4,

which is equivalent to (3.3). Hence we complete the proof. �

Using the definition of lk,n, we have the following:

Corollary 3.6. For every positive real number n, we have

(3.6) 3

(

l9,n +
√
3 +

1

l9,n

)(

l9,9n +
√
3 +

1

l9,9n

)

=

(

l9,9n

l9,n

)2

.

Proof. Letting q = e−π
√
n/9 in (1.5), we find that P =

√
3 l9,n and Q =

√
3 l9,9n

in Theorem 3.5. Rewriting (3.5) in terms of l9,n and l9,9n, we complete the
proof. �
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4. Evaluations of lk,n and l′k,n

In this section, we evaluate specific values of lk,n and l′k,n for some positive
real numbers k and n by using the explicit relations and formulas established
in Section 3.

The following results exhibit a general method for evaluating the values of
l′3,4n for all positive integers n. We show the case when n = 1, n = 2, and
n = 3.

Theorem 4.1. We have

(i) l′3,4 =
1 +

√
3√

2
,

(ii) l′3,16 = 1 +
√
3 +

√

2 +
√
3,

(iii) l′3,64 =

(

3a8 − 8a4 + 3 +
√
3(a4 − 1)

√

(3a4 − 1)(a4 − 3)

2

)1/4

,

where

a = 1 +
√
3 +

√

2 +
√
3.

Proof. For (i), letting n = 1 in (3.2) and putting the value of l′3,1 = (2+
√
3 )1/4

from Theorem 4.3(i) in [9], we find that

(2−
√
3 ) l′83,4 − 4 l′43,4 + 2 +

√
3 = 0.

Solving for l′3,4 and using the fact that l′3,4 has a real value greater than 1, we
complete the proof.

For (ii), letting n = 4 in (3.2) and putting the value of l′3,4 from the previous
result of (i), we find that

l′83,16 − 34(7 + 4
√
3 ) l′43,16 + 97 + 56

√
3 = 0.

Solving for l′3,16 and using the fact that l′3,16 has a real value greater than 1,
we complete the proof.

For (iii), letting n = 16 in (3.2) and putting the value of l′3,16 from the
previous result of (ii), we find that

l′83,64 − (3a8 − 8a4 + 3) l′43,64 + a8 = 0,

where

a = 1 +
√
3 +

√

2 +
√
3.

Solving for l′3,64 and using the fact that l′3,64 has a real value greater than 1,
we complete the proof. �

See Theorem 4.10(ix) in [10] for an alternative proof for Theorem 4.1(i). By
repeating the same argument as in the proof of Theorem 4.1, we can evaluate
the values of l′3,4n for n = 4, 5, 6, . . . .

Theorem 4.2. We have
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(i) l′9,4 = 1 +
√
3 +

√

3 + 2
√
3,

(ii) l′9,36 =

√
3 a2 − 2a+

√
3 + 2

√√
3 a(a2 −

√
3 a+ 1)

(
√
3 a− 1)2

,

where

a = 2−
√
3 + (38− 22

√
3 )1/3 +

2(5− 3
√
3 )

(38− 22
√
3 )1/3

,

Proof. For (i), letting n = 1 in (3.4) and using h9,1 = 1 from Lemma 2.7, we
find that

l′29,4 − 2(1 +
√
3 ) l′9,4 + 1 = 0.

Solving for l′9,4 and noting the fact that l′9,4 > 1, we complete the proof.
For (ii), let n = 9 in (3.4), then we have

(
√
3h9,9 − 1) l′9,36 − 2

√

h9,9 l
′
9,36 − h9,9 +

√
3 = 0,

where

h9,9 = 2−
√
3 + (38− 22

√
3 )1/3 +

2(5− 3
√
3 )

(38− 22
√
3 )1/3

from Theorem 4.2(ii) in [9]. Now solving for l′9,36 and using the fact that
l′9,36 > 1, we complete the proof. �

See Theorem 4.3(iii) in [9] for an alternative proof for Theorem 4.2(i).

Corollary 4.3. Let a be as in Theorem 4.2(ii). Then we have

l9,36 =
1

2



b−
√
3 +

√√
3 (b2 + 1)(b −

√
3 )√

3 b− 1



 ,

where

b =

√
3 a2 − 2a+

√
3 + 2

√√
3 a(a2 −

√
3 a+ 1)

(
√
3 a− 1)2

.

Proof. Let n = 36 in Lemma 2.8 and b = l′9,36. Then we find that

(
√
3 b− 1)l29,36 − (

√
3 b2 − 4b+

√
3 )l9,36 − b2 +

√
3 b = 0.

Putting the value of b from Theorem 4.2(ii), solving for l9,36, and using the fact
that l9,36 > 1, we complete the proof. �

The following results exhibit a general method for evaluating the values of
l9,9n for all positive integers n. We show the case when n = 1 and n = 2.

Theorem 4.4. We have

(i) l9,9 = 2 +
√
3 + (38 + 22

√
3 )1/3 +

2(5 + 3
√
3 )

(38 + 22
√
3 )1/3

,

(ii) l9,81 =
(

(a2 + 1)(a+
√
3 )
)2/3

b1/3 +
(

(a2 + 1)(a+
√
3 )
)1/3

b2/3 + b,
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where

a = 2 +
√
3 + (38 + 22

√
3 )1/3 +

2(5 + 3
√
3 )

(38 + 22
√
3 )1/3

,

b = a(a2 +
√
3 a+ 1).

Proof. For (i), letting n = 1 in (3.6) and using l9,1 = 1 from Lemma 2.7, we
find that

l39,9 − 3(2 +
√
3 ) l29,9 − 3(3 + 2

√
3 ) l9,9 − 3(2 +

√
3 ) = 0.

Solving for l9,9 and noting the fact that l9,9 is real valued, we complete the
proof.

For (ii), let n = 9 in (3.6), then we have

3

(

l9,9 +
√
3 +

1

l9,9

)(

l9,81 +
√
3 +

1

l9,81

)

=

(

l9,81

l9,9

)2

.

Putting the value of l9,9 from the previous result of (i), solving for l9,81, and
using the fact that l9,81 is real valued, we complete the proof. �

See Theorem 4.4(ii) in [9] for an alternative proof for Theorem 4.4(i). By
repeating the same argument as in the proof of Theorem 4.4, we can evaluate
the values of l9,9n for n = 3, 4, 5, . . . .

Corollary 4.5. Let a and b be as in Theorem 4.4(ii). Then we have

l′9,81 =
1

2



c+
√
3 +

√√
3 (c2 + 1)(c+

√
3 )√

3 c+ 1



 ,

where

c =
(

(a2 + 1)(a+
√
3 )
)2/3

b1/3 +
(

(a2 + 1)(a+
√
3 )
)1/3

b2/3 + b.

Proof. The result follows directly from Lemma 2.8 and Theorem 4.4(ii). �

5. Evaluations of G(q)

We now turn to an application of some numerical values of lk,n and l′k,n
for some positive real numbers k and n to evaluations of the cubic contin-

ued fraction. In [7], the values of G(e−π/
√
3 ), G(−e−π/

√
3 ), and G(e−2π/

√
3 )

were evaluated. In particular, G(e−2π/
√
3 ) was evaluated by multiplying both

−G(e−π/
√
3 ) and G(−e−π/

√
3 ) as in Lemma 2.9. In this section, we evalu-

ate G(e−2π/
√
3 ) by putting the value of l′3,4 in Lemma 2.9(ii). Moreover, we

evaluate the numerical values of G(e−4π/
√
3), G(e−8π/

√
3), G(−e−2π/

√
3), and

G(−e−4π/
√
3).

Theorem 5.1. We have

(i) G(e−2π/
√
3 ) =

1

2
(−5 + 3

√
3 )1/3,
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(ii) G(e−4π/
√
3 ) =

1

2

(

7 + 6
√
3− 9

√

2 +
√
3
)1/3

,

(iii) G(e−8π/
√
3 ) =

1

24/3

(

3a4 − 7− 3
√
3 (a4 − 1)

√

a4 − 3

3a4 − 1

)1/3

,

where

a = 1 +
√
3 +

√

2 +
√
3.

Proof. For (i), letting n = 4 in Lemma 2.9(ii) and putting the value of l′3,4 from
Theorem 4.1(i), we complete the proof.

For (ii), letting n = 16 in Lemma 2.9(ii) and putting the value of l′3,16 from
Theorem 4.1(ii), we complete the proof.

For (iii), letting n = 64 in Lemma 2.9(ii) and putting the value of l′3,64 from
Theorem 4.1(iii), we complete the proof. �

Corollary 5.2. We have

(i) G(−e−2π/
√
3 ) = −

(

1

2
(5 + 3

√
3 )
(

7 + 6
√
3− 9

√

2 +
√
3
)

)1/3

,

(ii) G(−e−4π/
√
3 ) = −

(

(3a4 − 7)
√
3a4 − 1− 3

√
3 (a4 − 1)

√
a4 − 3

2(7 + 6
√
3− 9

√

2 +
√
3 )

√
3a4 − 1

)1/3

,

where

a = 1 +
√
3 +

√

2 +
√
3 .

Proof. Parts (i) and (ii) follow directly from Lemma 2.10 and Theorem 5.1. �

Note that the numerical values of G(e−π), G(e−2π), and G(−e−π) were
evaluated in [4]. Note also that the numerical values of G(e−π), G(e−2π),
G(e−3π), G(−e−2π), and G(−e−3π) were evaluated in [9]. Hence the numerical
values of G(e−π) and G(e−2π) were given in both [4] and [9], but they were
evaluated by different proofs. We close this section by evaluating the numerical
values of G(e−6π), G(e−9π), G(e−12π), G(e−18π), G(−e−6π), and G(−e−9π).

Theorem 5.3. Let a and b be as in Corollary 4.3. Then we have

(i) G(e−6π) =
(
√
3 a− 1)2

2

(

1 + 33/4
√

a(a2 −
√
3 a+ 1)

) ,

(ii) G(−e−6π) = −1

4

(

(
√
3 b− 1)2 − 33/4

√

(b2 + 1)(b −
√
3 )(

√
3 b− 1)

)

.

Proof. Part (i) follows directly from Lemma 2.9(i) and Theorem 4.2(ii). Part
(ii) follows directly from Lemma 2.9(iii) and Corollary 4.3. �
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Corollary 5.4. Let a and b be as in Corollary 4.3. Then we have

G(e−12π) =

(
√
3 a− 1)2

(

(
√
3 b − 1)2 − 33/4

√

(b2 + 1)(b−
√
3 )(

√
3 b − 1)

)

8

(

1 + 33/4
√

a(a2 −
√
3 a+ 1)

) .

Proof. The result follows directly from Lemma 2.10 and Theorem 5.3. �

Theorem 5.5. Let a and b be as in Theorem 4.4(ii). Then we have

G(−e−9π) = − 1

1 +
√
3 c
,

where

c =
(

(a2 + 1)(a+
√
3 )
)2/3

b1/3 +
(

(a2 + 1)(a+
√
3 )
)1/3

b2/3 + b.

Proof. Letting n = 81 in Lemma 2.9(iii) and putting the value of l9,81 from
Theorem 4.4(ii), we complete the proof. �

Theorem 5.6. Let c be as in Corollary 4.5. Then we have

G(e−9π) =
1

4

(

33/4
√

(c2 + 1)(c+
√
3 )(

√
3 c+ 1)− (

√
3 c+ 1)2

)

.

Proof. Letting n = 81 in Lemma 2.9(i) and putting the value of l′9,81 from
Corollary 4.5, we complete the proof. �

Corollary 5.7. Let c be as in Corollary 4.5. Then we have

G(e−18π) =
33/4

√

(c2 + 1)(c+
√
3 )(

√
3 c+ 1)− (

√
3 c+ 1)2

4(
√
3 c+ 1)

.

Proof. The result is an immediate consequence of Lemma 2.10 and Theorems
5.5 and 5.6. �
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