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A NOTE ON THE HYPER-ORDER OF ENTIRE FUNCTIONS

Feng Lü and Jianming Qi

Abstract. In the paper, we have two purposes. Firstly, we estimate the
hyper-order of an entire function which shares two functions with it’s first
derivative, and two examples are given to show the conclusion is sharp.
Secondly, we generalize the Brück conjecture with the idea of sharing
functions.

1. Introduction and main results

In the Nevanlinna theory, the order and the hyper-order of a meromorphic
function are two important concepts. So, it is meaningful to discuss the prop-
erties of the order and the hyper-order for a meromorphic function. Let us
recall the definitions of the order and hyper-order of a meromorphic function
f , which are respectively defined as (see [12])

ρ(f) = lim sup
r→∞

logT (r, f)

log r
= lim sup

r→∞

log logM(r, f)

log r
,

σ(f) = lim sup
r→∞

log logT (r, f)

log r
= lim sup

r→∞

log log logM(r, f)

log r
.

We also define the hyper-lower-order as follows.

λ(f) = lim inf
r→∞

log logT (r, f)

log r
= lim inf

r→∞

log log logM(r, f)

log r
.

In 1982, Bank and Laine [1] investigated the solutions of a differential equa-
tion and obtained the following result.

Theorem A. Let A(z) be a nonconstant polynomial of degree n, and let f 6= 0
be a solution of the equation f ′′ +A(z)f = 0. Then the order of growth of f is
n+2
2 .

Since then, to study properties of the order and hyper-order for the solutions
of some differential equations becomes a hot topic and is discussed by many
experts.

In 2008, Li and Gao [8] deduced a result as follows.
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Theorem B. Let Q1 and Q2 be two nonzero polynomials, and let P be a

polynomial. If f is a nonconstant solution of the equation

f (k) −Q1 = eP (f −Q2),

then σ(f) = n, where, and in the sequel, n denotes the degree of P .

It is well-known that the problem of the differential equations is closely
related with the problem of meromorphic functions sharing values. So, it is
an interesting attempt to derive the properties of order and hyper-order for
meromorphic functions by considering the situation of sharing values.

In 2009, Lü and Yi [11] obtained a result.

Theorem C. Let f be a nonconstant meromorphic function with finitely many

poles, and let Q1, Q2(6= Q1) be two polynomials. If

f(z) = Q1 ⇒ f ′(z) = Q1 and f(z) = Q2 ⇒ f ′(z) = Q2,

then f is of finite order.

In 2009, Chen, Lü and Yi [4] improved the above theorem and deduced the
following result.

Theorem D. Let f be a nonconstant meromorphic function with finitely many

poles, and let R3(z) = c1e
z and R4(z) = c2e

z, where c1, c2 are two nonzero

constants. If

f(z) = R3 ⇒ f ′(z) = R3 and f(z) = R4 ⇒ f ′(z) = R4,

then f is of finite order.

From Theorem C and D, we see that f and f ′ share two functions with finite
order. So, it is natural to ask what will happen if they share functions with
infinite order. In the work, we discuss the problem and derive the following
result.

Theorem 1.1. Let Q1 6= 0 and Q2 be two distinct polynomials, let f , γ be two

entire functions. If

f(z) = α(z) ⇒ f ′(z) = α(z) and f(z) = β(z) ⇒ f ′(z) = β(z),

where α = Q1e
γ, β = Q2e

γ, and if α− α′ or β − α′ has at most finitely many

zeros, then σ(f) ≤ σ(α) = ρ(γ).

Remark 1. The following examples show that the conclusion σ(f) ≤ ρ(γ) is
sharp.

Example 1. Let f(z) = Aez, where A is a nonzero constant. Let α(z) =

ee
−z+z , and let β(z) = P (z)ee

−z+z, where P (z) is a polynomial. Noting that
f = f ′, we have

f(z) = α(z) ⇒ f ′(z) = α(z) and f(z) = β(z) ⇒ f ′(z) = β(z).

Obviously, α(z)−α′(z) = ee
−z

has no zeros. Thus, it satisfies the assumptions
of Theorem 1.1 and σ(f) = 0 < σ(α) = 1.
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Example 2. Let f(z) = zez
2

+ ez/2, α(z) = (4z2− z+2)ez
2

, and β(z) = zez
2

.
Then

f ′ − α

f − α
=

1

2
and f(z)− β(z) 6= 0.

It satisfies the assumptions of Theorem 1.1 and σ(f) = 0.

Remark 2. The condition that α − α′ or β − α′ has at most finitely many
zeros is essential in our proof of Theorem 1.1. But we don’t know whether it
is necessary or not. If γ is a polynomial, then the above condition obviously
holds.

Remark 3. In Theorem 1.1, if the order of γ is zero, for example γ is a poly-
nomial, then σ(f) = 0, which is an important property for a meromorphic
function f .

Remark 4. If f is a meromorphic function with finitely many poles and Q1, Q2

are two rational functions, the conclusion is still valid in Theorem 1.1.

2. Some results of the Brück conjecture

In 1996, Brück [3] posed the following conjecture which reveals the relation-
ship between f and f ′ if an entire function f shares one value CM with its first
derivative f ′?

Conjecture. Let f be a non-constant entire function such that the hyper-
order σ(f) of f is not a positive integer and σ(f) < ∞. If f and f ′ share a
finite value a CM, then

f ′ − a

f − a
= c,

where c is non-zero constant.

In [5], Chen generalized the Brück conjecture with the idea of sharing z and
got the following result.

Theorem E. Let f be a nonconstant entire function such that the hyper order

σ(f) < 1
2 , k be a positive integer. If f and f (k) share z CM, then

f (k)(z)− z = c(f(z)− z),

where c is a nonzero constant.

In the following, due to the methods of Chen and Zhang [5], Zhang and Liao
[13], we obtain a result which is an improvement of the previous theorems in
some sense.

Theorem 2.1. Let f, α be two meromorphic functions with at most finitely

many poles, and let σ(f) < 1
2 and σ(α) < λ(f). If f and α have no common

poles, f and f (k) share α CM, then f(k)−α
f−α = c, where c is a nonzero constant.
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Remark 5. In the proof of Theorem 2.1, we need the condition σ(P ) < λ(f) to
confirm that r 6∈ E

M(r, P )

M(r, f)
→ 0 as r → ∞,

where E ⊂ [0,+∞) is a set with finite logarithmic measure. If it is deleted, we
do not know whether the above conclusion holds or not.

Remark 6. If P is a polynomial, then the condition σ(P ) < λ(f) can be deleted
in Theorem 2.1. The result is listed as below, which can be proved with the
same way in Theorem 2.1.

Corollary 2.2. Let f be a meromorphic function with at most finitely many

poles and hyper-order σ(f) < 1
2 , let P be a non-zero polynomial. If f and f (k)

share P CM, then f(k)−P
f−P = c, where c is a nonzero constant.

3. Some lemmas

In order to prove our theorems, we need the following lemmas.

Lemma 3.1 ([10, 9]). Let {fn} be a family of functions meromorphic (analytic)
on the unit disc △. If an → a, |a| < 1, and f ♯

n(an) → ∞, then there exist

(a) a subsequence of fn (which we still write as {fn});
(b) points zn → z0 |z0| < 1;
(c) positive numbers ρn → 0
such that fn(zn + ρnξ) = gn(ξ) → g(ξ) locally uniformly, where g is a

nonconstant meromorphic (entire) function on C, such that

ρn ≤
M

f ♯
n(an)

,

where M is a constant which is independent of n.

With a similar method in [9, Lemma 2], we obtain the following result, which
plays an important part in the proof of Theorem 1.1.

Lemma 3.2. Let f be a meromorphic function of hyper-order σ(f) > 0. Then,

for any ǫ > 0, there exists a sequence zn → ∞ such that f ♯(zn) > e|zn|
σ(f)−ǫ

if

n is large enough.

Proof. On the contrary, there exist ǫ > 0, N > 0 and R > 0 such that for all

z, |z| ≥ R satisfying f ♯(z) ≤ e|z|
σ(f)−ǫ

. Thus,

S(r, f) =
1

π

∫∫

|z|<r

f ♯(z)2dσ =
1

π

∫∫

R≤|z|<r

f ♯(z)2dσ +O(1)

≤
1

π

∫∫

R≤|z|<r

e2|z|
σ(f)−ǫ

dσ +O(1) =
1

π

∫ 2π

0

dθ

∫ r

R

e2|z|
σ(f)−ǫ

dt+O(1)

≤ 2re2r
σ(f)−ǫ

[1 + o(1)].
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By the definition of Ahlfors characteristic of f , we have

T (r, f) =

∫ r

0

S(t, f)

t
dt ≤ 2re2r

σ(f)−ǫ

[1 + o(1)].

Then, the hyper-order of f is

σ(f) = lim sup
r→∞

log logT (r, f)

log r
≤ lim sup

r→∞

(σ(f)− ǫ) log r

log r
= σ(f)− ǫ,

a contradiction. Thus, the proof is completed. �

Lemma 3.3 ([2]). Let h(z) be an entire function with order ρ(h) = ρ < 1
2 , set

A(r) = inf
|z|=r

log |h(z)|, B(r) = sup
|z|=r

log |h(z)|.

If ρ < α < 1, then

log dens{r : A(r) > (cos πα)B(r)} ≥ 1−
ρ

α

where the lower logarithmic density log densH of subset H ⊂ (1,∞) is defined

by

log densH = lim inf(

∫ r

1

(XH(t)/t)dt)/ log r,

where XH(t) is the characteristic function of set H.

Remark 7. From the definitions of logarithmic measure and logarithmic density,
it is easy to see that the lower logarithmic density log densH > 0, then the
logarithmic measure lmH = +∞.

Lemma 3.4 ([7, p. 51 Theorem 3.2]). Let f be a transcendental entire function

and 0 < δ < 1
4 . Suppose that at the point z with |z| = r the inequality

|f(z)| > M(r, f)ν(r, f)−
1
4+δ

holds, then there exists a set F ∈ R+ of finite logarithmic measure, i.e.,
∫

F
1
t dt < +∞, such that

f (m)(z) = (
ν(r, f)

z
)m(1 + o(1))f(z)

holds for all r 6∈ F .

4. The Proof of Theorem 1.1

With the similar way of [6, 10], we prove Theorem 1.1 as follows.
Noting that α = Q1e

γ , thus σ(α) = ρ(γ). So, we just need to obtain
σ(f) ≤ ρ(γ).

On the contrary, assume that σ(f) = d > c = ρ(γ). Set H = f − α. Then
(I) H(z) = 0 ⇒ H ′(z) = α(z)− α′(z),
(II) H(z) = β(z)− α(z) ⇒ H ′(z) = β(z)− α′(z).
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Let P = β − α and F = H
P . Obviously, σ(F ) = σ(f) = d. By Lemma 3.2,

then for 0 < ǫ < d−c
2 , there exists a sequence wn → ∞ as n → ∞ such that

F ♯(wn) > e|wn|
σ(F )−ǫ

= e|wn|
d−ǫ

.

Noting that P = β − α has at most finitely many zeros, then there exists a
positive number r such that F has no poles in D = {z : |z| > r}.

In view of wn → ∞ as n → ∞, without loss of generality, we may assume
|wn| ≥ r + 1 for all n. Define D1 = {z : |z| < 1} and

Fn(z) = F (wn + z).

Then every Fn are analytic in D1 and F ♯
n(0) → ∞ as n → ∞. It follows from

Marty’s criterion that (Fn)n is not normal at z = 0.
Therefore, we can apply Lemma 3.1. Choosing an appropriate subsequence

of (Fn)n if necessary, we may assume that there exist sequences (zn)n and (ρn)n
with |zn| < r < 1 and ρn → 0 such that the sequence (gn)n defined by

(4.1) gn(ζ) = Fn(zn + ρnζ) =
H(wn + zn + ρnζ)

P (wn + zn + ρnζ)
→ g(ζ)

locally uniformly in C with a nonconstant entire function g and

(4.2) ρn ≤
M

F ♯
n(0)

=
M

F ♯(wn)
≤ Me−|wn|

d−ǫ

for a positive number M .
From (4.1), we have

(4.3)

g′n(ζ) = ρn
H ′(wn + zn + ρnζ)

P (wn + zn + ρnζ)
− ρn

H(wn + zn + ρnζ)P
′(wn + zn + ρnζ)

P 2(wn + zn + ρnζ)

→ g′(ζ).

Noting that P = α − β = Qeγ , where Q = Q1 − Q2 is a nonzero polynomial,

we have P ′

P = Q′+Qγ′

Q and ρ(γ′) = ρ(γ) = c. In view of the definition of order,

we have

(4.4)

∣

∣

∣

∣

P ′

P
|z=wn+zn+ρnζ

∣

∣

∣

∣

=

∣

∣

∣

∣

Q′ +Qγ′

Q
|z=wn+zn+ρnζ

∣

∣

∣

∣

≤ |wn|
qM(|wn + zn + ρnζ|, γ

′)

≤ |wn|
qM(2|wn|, γ

′) ≤ |wn|
qeA|wn|

c+ǫ

,

where A is a positive constant and q is an integer. Noting that 0 < ǫ < d−c
2 ,

we have d− ǫ > c+ ǫ. Then, combining (4.2) and (4.4) yields
(4.5)

∣

∣

∣

∣

ρn
H(wn + zn + ρnζ)P

′(wn + zn + ρnζ)

P 2(wn + zn + ρnζ)

∣

∣

∣

∣

=

∣

∣

∣

∣

ρngn(ζ)
P ′(wn + zn + ρnζ)

P (wn + zn + ρnζ)

∣

∣

∣

∣

≤M |gn(ζ)||wn|
qeA|wn|

c+ǫ−|wn|
d−ǫ

→ 0 as n → ∞.
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From (4.3) and (4.5), we deduce that

(4.6) ρn
H ′(wn + zn + ρnζ)

P (wn + zn + ρnζ)
→ g′(ζ).

We claim that
(1) g(ζ) = 0 ⇒ g′(ζ) = 0 and
(2) g(ζ) = 1 ⇒ g′(ζ) = 0.
Suppose that g(ζ0) = 0, then by Hurwitz’s theorem there exist ζn, ζn → ζ0,

such that (for n sufficiently large)

gn(ζn) =
H(wn + zn + ρnζn)

P (wn + zn + ρnζn)
= 0.

By the assumption of (I) we have

(4.7) H ′(wn + zn + ρnζn) = (α − α′)(wn + zn + ρnζn).

Observing that α− α′ = (Q1 −Q′
1 −Q1γ

′)eγ , similarly as (4.5), we have

ρn

∣

∣

∣

∣

(α− α′)(wn + zn + ρnζn)

P (wn + zn + ρnζn)

∣

∣

∣

∣

= ρn

∣

∣

∣

∣

[Q1 −Q′
1 −Q1γ

′](wn + zn + ρnζn)

[Q1 −Q2](wn + zn + ρnζn)

∣

∣

∣

∣

→ 0 as n → ∞.

Then,

g′(ζ0) = lim
n→∞

ρn
H ′(wn + zn + ρnζn)

P (wn + zn + ρnζn)
= lim

n→∞
ρn

(α− α′)(wn + zn + ρnζn)

P (wn + zn + ρnζn)
= 0.

Thus g(ζ) = 0 ⇒ g′(ζ) = 0, which is (1). Similarly, we can prove (2). Thus,
we finish the proof of the claims.

Noting that either α−α′ or β−α′ has at most finitely many zeros, without
loss of generality, we assume that α−α′ has at most finitely many zeros. Next,
we shall prove that g(ζ) 6= 0.

Suppose ξ0 is a zero of g(ζ) with multiplicity m(≥ 2). Then g(m)(ξ0) 6= 0.
Thus there exists a positive number δ, such that

(4.8) g(ζ) 6= 0, g′(ζ) 6= 0, g(m)(ζ) 6= 0

on Do
δ = {z : 0 < |ζ − ξ0| < δ}.

Noting that g 6= 0, by Rouché theorem there exist ζn,j (j = 1, 2, . . . ,m) on
Dδ/2 = {ξ : |ζ − ξ0| < δ/2} such that

gn(ζn,j) = H(wn + zn + ρnζn,j) = 0 (j = 1, . . . ,m).

Observing that α−α′ has at most finitely many zeros, then (for n large enough)
we have

H ′(wn + zn + ρnζn,j)

= [α− α′](wn + zn + ρnζn,j) 6= 0,

which implies that each ζn,j is a simple zero of H(wn + zn + ρnζ), that is
ζn,j 6= ζn,i (1 ≤ i 6= j ≤ m).
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As in (4.5), we deduce

(4.9) ρn
[α− α′](wn + zn + ρnζ)

P (wn + zn + ρnζ)
→ 0.

It follows from (4.6) and (4.9) that

(4.10) Kn(ζ) = ρn
H ′(wn + zn + ρnζ)

P (wn + zn + ρnζ)
− ρn

[α− α′](wn + zn + ρnζ)

P (wn + zn + ρnζ)
→ g′(ζ)

and Kn(ζn,j) = 0 (j = 1, . . . ,m). By (4.8) we obtain

lim
n→∞

ζn,j = ξ0 (j = 1, 2, . . . ,m).

Noting that (4.8), (4.10) and Kn(ζ) has m zeros ζn,j (j = 1, 2 . . . ,m) in Dδ/2,
we obtain from the Hurwitz’s theorem that ξ0 is a zero of g′ with multiplicity
m, and thus g(m)(ξ0) = 0. This is a contradiction. Hence g(ζ) 6= 0.

We have shown that g is a non-vanishing, entire function that takes the
value 1 always with multiplicity at least 2. But this contradicts Nevanlinnna’s
second fundamental theorem that the sum of the defects is at most 2.

Thus, we complete the proof of Theorem 1.1.

5. Proof of Theorem 2.1

From the assumptions of Theorem 2.1, we set

(5.1)
f (k) − α

f − α
=

1

Q
eφ,

where φ is an entire function and Q is a polynomial. Noting that f and α have
only finitely many poles, then there exists a polynomial P such that fP and
αP are two entire functions. Set

F = fP and A = αP.

Obviously, σ(F ) = σ(f) < 1
2 and σ(A) = σ(α) < λ(F ) = λ(f). We also have

(5.2) f (k) = (
F

P
)(k) =

k
∑

j=0

Ck,jF
(k−j)(

1

P
)(j),

where Ck,j =
k!

j!(k−j)! is a constant.

In the following, we will prove φ is a constant.
Rewriting (5.1) as

(5.3)

eφ = Q
f (k) − α

f − α
= Q

∑k
j=0 Ck,jF

(k−j)( 1
P )(j) − A

P
F
P − A

P

= Q

∑k
j=0 Ck,j

F (k−j)

F ( 1
P )(j)P − A

F

1− A
F

.
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From (5.3), we have

(5.4) φ = logQ

∑k
j=0 Ck,j

F (k−j)

F ( 1
P )(j) 1

P − A
F

1− A
F

,

where log g is a principle branch of Log g. By Lemma 3.4, we get

(5.5)
F (k−j)(zr)

F (zr)
= (

ν(r, F )

zr
)k−j(1 + o(1)) (j = 0, . . . , k)

possibly outside a set of finite logarithmic measure E, where |F (zr)| = M(r, F ).

Observing that σ(A) < λ(F ), for 0 < ǫ < λ(F )−σ(A)
2 , we have

σ(A) = lim sup
r→∞

log log logM(r, A)

log r
≤ σ(A) + ǫ,

which implies that (for r large enough)

(5.6) M(r, A) ≤ ee
rσ(A)+ǫ

.

Similarly, we deduce that (for r large enough)

(5.7) M(r, F ) ≥ ee
rλ(F )−ǫ

.

Observing that ǫ < λ(F )−σ(A)
2 , we have σ(A) + ǫ < λ(F )− ǫ. Then, combining

(5.6) and (5.7) yields that

(5.8)

M(r, A)

M(r, F )
≤

ee
rσ(A)+ǫ

eer
λ(F )−ǫ

≤
1

e[er
λ(F )−ǫ

−er
σ(A)+ǫ

]
→ 0 as r → ∞.

It indicates that

(5.9)
M(r, A)

M(r, F )
→ 0 as r → ∞.

So, substituting (5.5) (5.9) into (5.4), we deduce

(5.10)

|φ(zr)| = | logQ

∑k
j=0 Ck,j

F (k−j)

F ( 1
P )(j)P − A

F

1− A
F

|

≤ | log |Q

∑k
j=0 Ck,j

F (k−j)

F ( 1
P )(j)P − A

F

1− A
F

||+ 2π

≤ A[1 + o(1)] log ν(r, F ),

for |zr| = r 6∈ E, where A is a positive number. Now, we consider into two
cases.

Case 1. φ is a polynomial with degree n ≥ 1.
Noting that the definition of hyper-order of f , for ǫ < 1

2 , we have

(5.11) log ν(r, F ) ≤ r(
1
2+ǫ).
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Then, from (5.10) we obtain that

(5.12) B(1 + o(1))|r|n = |φ(zr)| ≤ A[1 + o(1)]r(
1
2+ǫ),

where B is a positive constant. This is a contradiction.
Case 2. φ is a transcendental entire function.

Since log log ν(r,F )
log r < 1

2 for sufficiently large r, from (5.10),

(5.13) |φ(zr)| ≤ A[1 + o(1)]r
1
2 .

Obviously, ρ(φ) ≤ σ(f) < 1
2 . Then, by Lemma 3.3, we know that there exists

a set H ⊂ (1,∞) that have logarithmic measure lmH = ∞, such that for all
|z| = r ∈ H , we have

(5.14) |φ(z)| ≥ M(r, φ)c,

where 0 < c < 1. Now, for all zr satisfying |zr| = r ∈ H\(E
⋃

[0, 1]) and
|F (zr)| = M(r, F ), by (5.13) and (5.14), we get

(5.15)
M(r, φ)c

r
1
2

≤ A.

Since φ is transcendental, we derive that

M(r, φ)c

r
1
2

→ ∞,

which contradicts with (5.15). Thus, φ is a constant.
Now, in the same way as [13, Theorem 1.1] we prove that Q is a constant.

On the contrary, we suppose that q = degQ ≥ 1 and eφ = 1 without loss of
generality.

Rewriting (5.9) as

(5.16) 1 = Q

∑k
j=0 Ck,j

F (k−j)

F ( 1
P )(j)P − A

F

1− A
F

.

Since P is a polynomial, we have

(5.17) |(
1

P
)(j)(zr)P (zr)| = r−j(d1 + o(1)),

where d1 is a positive number. We know that any zero of Q comes from a pole
of f with multiplicity k. Thus q ≥ k. Then, from the equations (5.5), (5.9),
and (5.17) we derive that (|z| = r 6∈ E)

rq−kν(r, F )k(d2 + o(1)) = 1,

where d2 is a positive number. Thus, it implies that ν(r, F ) is bounded. While,
for a transcendental entire function F , we have

ν(r, F ) → ∞ as r → ∞.

So, we derive a contradiction. Hence, Q is also a constant, and eφ

Q becomes a
constant c.

Hence, we complete the proof of Theorem 2.1.
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