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MANNHEIM CURVES IN 3-DIMENSIONAL SPACE FORMS

Jin Ho Choi, Tae Ho Kang, and Young Ho Kim

Abstract. We define the Mannheim curve in a 3-dimensional Riemann-
ian manifold, which is a generalization of the Mannheim curve in Eu-
clidean space. In particular, we study the Mannheim curves and their
partner curves in 3-dimensional space forms.

1. Introduction

In a classical differential geometry, the properties of curves in a 3-dimensional
Euclidean or Minkowski space are generally characterized by the algebraic equa-
tions concerning their curvature and torsion function. For example, the general
helices and the Bertrand curves in a 3-dimensional Euclidean space E3 are char-
acterized respectively by

aκ− τ = 0 and aκ+ bτ = 1

for some constants a 6= 0 and b, where κ and τ are the curvature function and
the torsion function under consideration.

On the other hand, it is well-known that the Mannheim curves in E
3 are

characterized by
κ = a(κ2 + τ2)

for a constant a 6= 0. Moreover, H. Liu and F. Wang proved that Mannheim
partner curves in E

3 are characterized by

κ′ =
κ

a
(1 + a2τ2),

where ′ denotes the differentiation with respect to the arc length parameter of
a given curve (see, [2]).

Recently, the authors defined the Bertrand curves in a 3-dimensional Rie-
mannian manifold and proved that those in 3-dimensional space forms are
characterized by the same algebraic equation as that in E

3 (see, [1]).
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In this paper, we define the Mannheim curves in a 3-dimensional Riemannian
manifold and give the algebraic characterizations of Mannheim curves and their
partner curves in 3-dimensional space forms.

2. Preliminaries and definitions

Let M := (M, 〈, 〉) be a 3-dimensional Riemannian manifold and ∇ denotes
the Levi-Civita connection of M . Let TpM denotes the set of all tangent
vectors to M at p ∈ M . For a vector v in TpM , we define the norm of v by

||v|| :=
√

〈v, v〉.
Let α : I → M be a smooth curve in M . If ‖ α′(s) ‖= 1 for each s ∈ I,

the curve α is called a unit speed curve. In this case, the parameter s can be
assumed to be the arc length parameter of α.

A vector field X on M along α is said to be parallel along α if ∇sX = 0
for all s, where ∇s denotes the covariant derivative along α. When a vector
field X on M is parallel along α, a vector Xα(s1) at α(s1) is called the parallel

displacement of a vector Xα(s0) at α(s0) along α.
A smooth curve α : I → M is called a geodesic in M if its velocity vector

field α′ is parallel along α. A non-geodesic unit speed smooth curve α is called a
Frenet curve on M if there exists an orthonormal frame {T = α′, N,B} along α
and smooth functions κα > 0 and τα satisfying the following system of ordinary
differential equations

(2.1) ∇s





T
N
B



 =





0 κα 0
−κα 0 τα
0 −τα 0









T
N
B



 .

The equation (2.1) is called the Frenet formula of the Frenet curve α. The
functions κα, τα and the orthonormal frame {T,N,B} are called the curvature,
the torsion and the Frenet frame of α, respectively. It is well-known that the
curvature and the torsion are invariant under the isometries of M . Three unit
vector fields T , N and B consisting of the Frenet frame of α are called the
tangent, principal normal and binormal vector field, respectively.

Denote the exponential map at p ∈ M by expp. Recall that the exponential

map expp : TpM → M at p ∈ M is defined by

expp(v) = γv(1),

where γv : [0,∞) → M is the constant speed geodesic starting from p with the
initial velocity γv(0) = v.

Now, we define a Mannheim curve in a 3-dimensional Riemannian manifold
M as follows:

Definition 2.1. Let α(s) be a Frenet curve in a 3-dimensional Riemannian
manifold M and {Tα, Nα, Bα} the Frenet frame of α. Consider a surface XNα

defined by

XNα
(s, t) = expα(s) (tNα(s)) .
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A Frenet curve β = β(s) in M is called a Mannheim partner curve of α if
the binormal vector field of β defined by β(s) = XNα

(s, t(s)) is the parallel
displacement of Nα(s0) or −Nα(s0) for each s = s0. When a Frenet curve α in
M admits its Mannheim partner curve, we call α a Mannheim curve in M .

Definition 2.1 is trivially equivalent to the following:

Definition 2.2. For two different Frenet curves α(s) and β(s) on M , β is a
Mannheim partner curve of α if α(s) = XBβ

(s, t(s)) and for each s = s0, its
principal normal vector Nα at α(s0) is the parallel displacement of Bβ or −Bβ

at β(s0) along the ruling curve at β(s0). When a Frenet curve α in M admits
its Mannheim partner curve, we call α a Mannheim curve on M .

Remark 2.1. Generally, a straight line ℓ in a 3-dimensional Euclidean space
E
3 can not define its Frenet frame. But, in the study of Bertrand curves

and Mannheim curves, the straight line ℓ is regarded as a Frenet curve with
arbitrary Frenet frame {T,N,B} for a unit tangent vector T of ℓ. In this paper,
we consider a geodesic in a 3-dimensional manifold M as a Frenet curve with
a Frenet frame {T,N,B} by choosing N and B properly, where T is the unit
tangent vector field T of the geodesic.

3. Mannheim curves in 3-dimensional space forms

Let M be a 3-dimensional simply connected space form, i.e., E3, S3 or H3,
and ∇ the Levi-Civita connection of M . Here, we consider M as a subspace of
E
4 with the induced metric from the natural inner product 〈, 〉 of E4 (resp., E4

1)
if M = E

3 or S3 := {p ∈ E
4 | 〈p, p〉 = 1} (resp., H3 := {p ∈ E

4
1 | 〈p, p〉 = −1}).

Let α be a smooth curve in M and ′ denotes the ordinary differentiation
with respect to the parameter of α in E

4 or E4
1. Then, the Gauss formula of M

along α is given by

(3.1) X ′ = ∇sX − ǫ〈X,α′〉α

for any vector field X on M along α, where ∇s denotes the covariant derivative
of M along the curve α and ǫ = −1, 0 or 1 if M is H3, E3 or S3, respectively.

The exponential map expp(tv) on M and the parallel transport P t(v) from
p to expp(tv) along the geodesic γv are well-known as the following simple
expressions (see, [1]):

(3.2) expp(tv) = f(t)p+ g(t)v

and

(3.3) P t(v) = −ǫg(t)p+ f(t)v,
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where p ∈ M and v ∈ TpM with ||v|| = 1 are considered as vectors in E
4 and

the functions f and g are given by

(3.4)











f(t) = 1 g(t) = t, if M = E
3,

f(t) = cos t g(t) = sin t, if M = S
3,

f(t) = cosh t g(t) = sinh t, if M = H
3

and ǫ = −1, 0 or 1 if M is H3, E3 or S3, respectively.
Now, we will consider the characterizations with respect to the curvature

and the torsion of Mannheim curves in 3-dimensional space forms.
In case of M = E

3, the following proposition is well-known.

Proposition 3.1. A Frenet curve α in E
3 with the curvature κ and the torsion

τ is a Mannheim curve if and only if it satisfies κ = a(κ2 + τ2) for a constant

a 6= 0.

LetM be a 3-dimensional non-flat space form, i.e., S3 orH3, and let α = α(s)
be a unit speed Frenet curve in M satisfying (2.1) and β = β(u) a Mannheim
partner curve of α, where u is the arc length parameter of β. Note that we
can assume du/ds > 0. Then, without loss of generality, the curve β(u) and
its binormal vector field Bβ(u) can be expressed by

β(u) = expα(u) (t(u)Nα(u))

= f(t(u))α(u) + g(t(u))Nα(u)
(3.5)

and Bβ(u) = ±P t(u)(Nα(u)), respectively, where the functions f and g are
given in (3.4).

By differentiating β with respect u as a vector valued function in E
4, we

have

β′(u) = {f(t(u))}′ α(u) + f(t(u))
ds

du
Tα(u)

+ {g(t(u))}′Nα(u) + g(t(u))
ds

du
∇sNα(u)

= {f(t(u))}′ α(u) + ds

du
{f(t(u))− κα(u)g(t(u))}Tα(u)

+ {g(t(u))}′Nα(u) + τα(u)g(t(u))
ds

du
Bα(u).

(3.6)

Since 〈β′, β〉 = 〈β′, Bβ〉 = 0 and Bβ = −ǫg(t)α + f(t)Nα, (3.5) shows that
β′ is orthogonal to α and Nα in E

4 or E4
1. Thus, from (3.6), we get

(3.7) {f(t(u))}′ = {g(t(u))}′ = 0.

Since t is a non-zero smooth function, t(u) is a non-zero constant, say t(u) =
θ 6= 0. Then, (3.5) and (3.6) are respectively reduced to

(3.8) β(u) = f(θ)α(u) + g(θ)Nα(u)
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and

(3.9) β′(u) =
ds

du
[{f(θ)− κα(u)g(θ)}Tα(u) + τα(u)g(θ)Bα(u)] ,

from which,

(3.10) du/ds =

√

{f(θ)− κα(u)g(θ)}2 + τα(u)2g(θ)2.

Note that if M = S
3 and θ = π in (3.8), then β = −α. Also, we can assume

g(θ) 6= 0.
For the sake of simplicity, we put

(3.11) Tβ(u) = a1(u)Tα(u) + a2(u)Bα(u),

where a1(u) =
ds
du

{f(θ)− κα(u)g(θ)}, a2(u) = ds
du

τα(u)g(θ).
Differentiating (3.11), we have

∇uTβ(u)− ǫβ(u) = − ǫa1(u)
ds

du
α(u) + a′1(u)Tα(u)

+
ds

du
{a1(u)κα(u)− a2(u)τα(u)}Nα(u) + a′2(u)Bα(u),

from which,

∇uTβ(u) = ǫ{f(θ)− a1(u)
ds

du
}α(u) + a′1(u)Tα(u)

+

{

a1(u)κα(u)
ds

du
− a2(u)τα(u)

ds

du
+ ǫg(θ)

}

Nα(u)

+ a′2(u)Bα(u).

(3.12)

Since 〈Nβ , β〉 = 〈Nβ , Bβ〉 = 0 and Bβ = −ǫg(t)α + f(t)Nα, (3.5) implies
that Nβ is orthogonal to α and Nα in E

4 or E4
1. Thus, from (3.12), we have

(3.13)

{

f(θ)− a1
ds
du

= 0,

a1κα
ds
du

− a2τα
ds
du

+ ǫg(θ) = 0

and

(3.14) ∇uTβ = a′1Tα + a′2Bα.

Then, we get

(3.15) a1 = f(θ)
du

ds
and a2 =

1

τα
(f(θ)κα + ǫg(θ))

du

ds
,

or equivalently,

f(θ) =
f(θ)− g(θ)κα

(f(θ)− g(θ)κα)2 + g(θ)2τα2
,

f(θ)κα + ǫg(θ) =
g(θ)τα

2

(f(θ)− g(θ)κα)2 + g(θ)2τα2
.

(3.16)
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It follows that

(3.17)
f(θ)

f(θ)κα + ǫg(θ)
=

f(θ)− g(θ)κα

g(θ)τα2
,

or, equivalently,

(3.18) κ2
α + τ2α = λκα + ǫ,

where λ is a constant given by

λ =
f(θ)2 − ǫg(θ)2

f(θ)g(θ)
.

Note that λ = θ (ǫ = 0), 2 cot 2θ (ǫ = 1) or λ = 2 coth2θ, |λ| > 2 (ǫ = −1).
Conversely, for a curve α in M satisfying (3.18) for some λ (λ 6= 0 if ǫ = 1,

|λ| > 2 if ǫ = −1), we may choose θ ∈ R such that λ = f(θ)2−ǫg(θ)2

f(θ)g(θ) , and hence

it satisfies (3.17). Equivalently, (3.17) can be rewritten as

(3.19) f(θ)− g(θ)κα =
f(θ)g(θ)τ2α

f(θ)κα + ǫg(θ)
.

We define a curve β by (3.8). Since either f(θ) = cos θ and g(θ) = sin θ, or
f(θ) = cosh θ and g(θ) = sinh θ, we can check from (3.19) that two equations of
(3.16) are satisfied. Note that (3.16) derives the system of equations of (3.13).
Thus, we get from (3.12) the principal normal vector field Nβ of β given by

(3.20) Nβ =
a′1

√

a′21 + a′22
Tα +

a′2
√

a′21 + a′22
Bα.

Since {β, Tβ, Nβ, Bβ} forms an orthonormal frame in E
4 or E

4
1, (3.8), (3.11)

and (3.20) yield the binormal vector field Bβ as

(3.21) Bβ(u) = ±{−ǫg(θ)α(u) + f(θ)Nα(u)} = ±P θ(Nα).

Therefore, β is a Mannheim partner curve of α, i.e., α is a Mannheim curve in
M .

Note that if f(θ) = 1, g(θ) = θ and ǫ = 0, (3.18) is replaced by

κα =
1

θ
(κ2

α + τ2α).

Thus, we have an extended characterization of Mannheim curves on a 3-
dimensional space form.

Theorem 3.2. A Frenet curve α on a 3-dimensional space form M with the

curvature κ and τ is a Mannheim curve if and only if it satisfies (3.18) for a

constant λ (λ 6= 0 if M = E
3 or S

3, |λ| > 2 if M = H
3) with (3.4).
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4. Mannheim partner curves in 3-dimensional space forms

In 2008, H. Liu and W. Fang defined the notion of Mannheim partner curve
and they proved the following:

Proposition 4.1. Let β = β(s) be a Frenet curve in E
3 with the arc length

parameter s. Then β is the Mannheim partner curve of some Mannheim curve

α in E
3 if and only if the curvature κ and the torsion τ of β satisfy the following

equation:
dτ

ds
=

κ

λ

(

1 + λ2τ2
)

for some nonzero constant λ.

LetM be a 3-dimensional non-flat space form, i.e., S3 orH3, and let α = α(s)
be a unit speed Frenet curve in M satisfying (2.1) and β = β(u) a Mannheim
partner curve of α, where u is the arc length parameter of β. Then, without
loss of generality, the curve α and its principal normal vector field Nα(u) can
be expressed by

α(u) = expβ(u) (t(u)Bβ(u))

= f(t(u))β(u) + g(t(u))Bβ(u)
(4.1)

and Nα(u) = ±P t(u)(Bβ(u)), respectively, where the functions f and g are
given in (3.4).

Differentiating α with respect to u, we have

α̇(u)
ds

du
= {f(t(u))}′ β(u) + f(t(u))Tβ(u)

+ {g(t(u))}′Bβ(u) + g(t(u))∇uBβ(u)

= {f(t(u))}′ β(u) + f(t(u))Tβ(u)

− τβ(u)g(t(u))Nβ(u) + {g(t(u))}′Bβ(u),

(4.2)

where α̇ denotes the differentiation of α with respect to s.
Since 〈α̇, α〉 = 〈α̇, Nα〉 = 0 and Nα = −ǫg(t)β + f(t)Bβ , (3.5) shows that α̇

is orthogonal to β and Bβ in E
4 or E4

1. Thus, from (4.2), we get

(4.3) {f(t(u))}′ = {g(t(u))}′ = 0.

Since t is a non-zero smooth function, t(u) is a non-zero constant, say t(u) =
θ 6= 0. Then, (4.1) and (4.2) are respectively reduced to

(4.4) α(u) = f(θ)β(u) + g(θ)Bβ(u)

and

(4.5) α̇(u)
ds

du
= [f(θ)Tβ(u)− g(θ)τβ(u)Nβ(u)] ,

from which,

ds/du =
√

f(θ)2 + τβ(u)2g(θ)2.
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Hence, we get

(4.6) Tα(u) = b1(u)Tβ(u) + b2(u)Nβ(u),

where b1(u) =
f(θ)√

f(θ)2+τβ(u)2g(θ)2
, b2(u) = − τβ(u)g(θ)√

f(θ)2+τβ(u)2g(θ)2
.

Differentiating (4.6) with respect to u gives

ds

du
(∇sTα(u)− ǫα(u)) = − ǫb1(u)β(u) + {b′1(u)− b2(u)κβ(u)}Tβ(u)

+ {b1(u)κβ(u) + b′2(u)}Nβ(u) + b2(u)τβ(u)Bβ(u),

from which,

ds

du
∇sTα(u) = ǫ{f(θ) ds

du
− b1(u)} β(u) + {b′1(u)− b2(u)κβ(u)}Tβ(u)

+ {b1(u)κβ(u) + b′2(u)}Nβ(u)

+

{

b2(u)τβ(u) + ǫg(θ)
ds

du

}

Bβ(u).

(4.7)

Since ∇sTα is proportional to Nα = −ǫg(θ)β + f(θ)Bβ , (4.7) implies that

(4.8)

{

b′1(u)− κβ(u)b2(u) = 0,

b′2(u) + κβ(u)b1(u) = 0

and

(4.9) ∇sTα = ǫ{f(θ)− b1
du

ds
} β +

{

b2
du

ds
τβ + ǫg(θ)

}

Bβ.

By a direct computation, we have

(4.10) b′1 − κβb2 =
g(θ)τβ

{

κβ

(

f(θ)2 + g(θ)2τβ
2
)

− f(θ)g(θ)τβ
′
}

√

[f(θ)2 + g(θ)2τβ2]
3

and

(4.11) b′2(u) + κβ(u)b1(u) =
f(θ)

{

κβ

(

f(θ)2 + g(θ)2τβ
2
)

− f(θ)g(θ)τβ
′
}

√

[f(θ)2 + g(θ)2τβ2]3
.

Thus, equation (4.8) yields

(4.12) τβ
′ =

κβ

λ̄

{

1 + λ̄2τβ
2
}

,

where λ̄ is a constant defined by λ̄ = g(θ)
f(θ) . Note that λ̄ = θ (ǫ = 0), tan θ

(ǫ = 1) or λ̄ = tanh θ, |λ̄| < 1 (ǫ = −1).
Conversely, for a curve β in M satisfying (4.12) for some λ̄ (λ̄ 6= 0 if ǫ = 1,

|λ̄| < 1 if ǫ = −1), we may choose θ ∈ R such that λ̄ = g(θ)
f(θ) . We define a curve

α by (4.4). Then, from (4.10) and (4.11), (4.7) implies (4.9).
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When M = S
3, (4.9) becomes

(4.13) ∇sTα =
sin θ cos θ(τβ

2 − 1)

cos2 θ + sin2 θτβ2
{sin θ β − cos θ Bβ} ,

from which,

(4.14) ||∇sTα|| =
| sin 2θ(τβ2 − 1)|

2(cos θ2 + sin θ2τβ2)
.

This means that if sin 2θ(τβ
2 − 1) > 0, β is a Mannheim partner curve of α.

In fact, for a function τβ 6= ±1, we can choose locally a constant θ satisfying
sin 2θ(τβ

2− 1) > 0. Thus, the principal normal vector field Nα of α is given by

Nα(u) = − sin θβ(u) + cos θBβ(u).

By the similar method, when M = H
3, β is a Mannheim partner curve of α.

Consequently, we have a characterization of Mannheim partner curves in a
3-dimensional space form.

Theorem 4.2. Let β = β(s) be a Frenet curve in a 3-dimensional space form

M with the arc parameter s. Then, β is the Mannheim partner curve of some

Mannheim curve α in M if and only if the curvature κ and the torsion τ of β
satisfy (4.12) for a constant λ̄ (λ̄ 6= 0 if M = E

3 or S
3, |λ̄| < 1 if M = H

3)
with (3.4).

A helix in a 3-dimensional manifold M is defined by a curve whose curvature
and torison are constants. In [2], Huili Liu and Fan Wang stated that the
Mannheim partner curve of a helix in E

3 is a straight line. Motivated by this
result, we give the following example:

Example. Let M be a 3-dimensional non-flat space form, i.e., M = S
3 or

M = H
3, and α = α(s) a helix in M parametrized by the arc length with the

curvature κ0 and the torsion τ0.

By applying κ0 and τ0 to (3.18), we have λ =
κ2

0
+τ2

0
−1

κ0

and λ =
κ2

0
+τ2

0
+1

κ0

according to M = S
3 and M = H

3, respectively. This means that α is a
Mannheim curve in M . Moreover, the Mannheim partner curve β of α in S

3

(resp. H3) is given by β(u) = cos θα(u)+sin θNα(u) (resp. β(u) = cosh θα(u)+
sinh θNα(u)) with

u =

√

(cos θ−κ0 sin θ)2+τ20 sin2 θ s (resp.

√

(cosh θ−κ0 sinh θ)2+τ20 sinh2 θ s),

θ =
1

2
tan−1

(

2κ0

κ2
0 + τ20 − 1

)

(resp.
1

2
tanh−1

(

2κ0

κ2
0 + τ20 + 1

)

),

where Nα is the principal normal vector field of α and u is the arc length
parameter of β.

On the other hand, equations (3.10), (3.14) and (3.15) lead to ∇uTβ = 0,
from which, β is a geodesic in M .

Consequently, we have the following proposition:
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Proposition 4.3. A helix in a 3-dimensional simply connected space form M
is a Mannheim curve. Moreover, the Mannheim partner curve of a helix in M
is a geodesic.
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