DOI QR코드

DOI QR Code

Hydrogen Production from Splitting of Methanol/Water Solution Using Perovskite Structured NbxSrTi1-xO3 Photocatalyts

Perovskite NbxSrTi1-xO3 광 촉매를 이용한 메탄올/물 분해로부터 수소제조

  • Kim, Dongjin (Department of Chemistry, Yeungnam University) ;
  • Han, Gi Bo (Plant Engineering Division, Institute for Advanced Engineering) ;
  • Park, No-Kuk (School of Chemical Engineering, Yeungnam University) ;
  • Lee, Tae Jin (School of Chemical Engineering, Yeungnam University) ;
  • Kang, Misook (Department of Chemistry, Yeungnam University)
  • Received : 2013.04.30
  • Accepted : 2013.05.27
  • Published : 2013.08.01

Abstract

This study focused on the synthesis of $Nb_xSrTi_{1-x}O_3$ photocatalysts which partially inserted Nb ions with excellent ability of fluorescence into the perovskite structured $SrTiO_3$ frameworks and their photocatalytic hydrogen productions from methanol/water splitting corresponding to the molar ratios of Ti and Nb. The characteristics of the synthesized $SrTiO_3$ and $Nb_xSrTi_{1-x}O_3$ powders were analyzed by X-ray diffraction (XRD), energy dispersive X-ray spectrometer (EDS), and UV-Visible spectrometer. The hydrogen evolution from methanol/water photo-splitting was enhanced over $Nb_{0.05}SrTi_{0.95}O_3$ compared to those over $SrTiO_3$ and another $Nb_xSrTi_{1-x}O_3$; 4.9 mL of hydrogen gases was collected after 8 h when 0.5g of $Nb_{0.05}SrTi_{0.95}O_3$ catalyst was used in pH 10.

본 연구는 광 촉매로써 널리 사용되어 온 perovskite 결정인 $SrTiO_3$ 골격에 형광능력이 우수한 Nb을 일부 삽입한 $Nb_xSrTi_{1-x}O_3$를 합성하였고, Nb와 Ti의 몰 비율에 따른 물 분해로부터 수소제조 성능을 비교하고자 하였다. 제조한 $SrTiO_3$$Nb_xSrTi_{1-x}O_3$ 분말에 대한 물성평가는 X-선 회절분석법(XRD), 에너지 분산형 X-선 분광계(EDS), 자외선/가시선 분광계(UV/Vis-spectrometer)를 통해 분석하였다. 메탄올:물(1:1) 광분해 수소제조 실험 결과, $SrTiO_3$ 광 촉매보다 Nb이 0.05 mol% 첨가된 $Nb_{0.05}SrTi_{0.95}O_3$ 광 촉매에서 촉매활성이 가장 뛰어났으며, 특히 염기성 용액에서 더 많은 양의 수소가 발생하였으며 8시간 반응 후 수소의 발생 누적 량은 4.9 mL였다.

Keywords

References

  1. Winter, C.-J., "Hydrogen Energy d Abundant, Efcient, Clean: A Debate over the Energy-system-of-change," Int. J. Hydrog. Energy, 34, S1-S52(2009). https://doi.org/10.1016/j.ijhydene.2009.05.063
  2. Baykara, S. Z., "Hydrogen Production by Direct Solar Thermal Decomposition of Water, Possibilities for Improvement of Process Efficiency," Int. J. Hydrog. Energy, 29, 1451-1458(2004). https://doi.org/10.1016/j.ijhydene.2004.02.014
  3. Rosen, M. A., "Advances in Hydrogen Production by Thermochemical Water Decomposition: A Review," J. Power Sources., 180, 516-529(2008). https://doi.org/10.1016/j.jpowsour.2008.01.063
  4. Niu, M. N., Cheng, D. and Cao, D., "Enhanced Photoelectrochemical Performance of Anatase $TiO_{2}$ by Metal-assisted SeO Coupling for Water Splitting," Int. J. Hydrog. Energy, 38, 1251-1257(2013). https://doi.org/10.1016/j.ijhydene.2012.10.109
  5. Seferlis, A. K. and Neophytides, S. G., "On the Kinetics of Photoelectrocatalytic Water Splitting on Nanocrystalline $TiO_{2}$ lms," Appl. Catal. B: Environ., 132-133, 543-552(2013). https://doi.org/10.1016/j.apcatb.2012.12.016
  6. Jiang, L., Wang, Q., Li, C., Yuan, J. and Shangguan, W., "$ZrW_{2}O_{8}$ Photocatalyst and Its Visible-light Sensitization Via Sulfur Anion Doping for Water Splitting," Int. J. Hydrog. Energy, 35, 7043-7050(2010). https://doi.org/10.1016/j.ijhydene.2009.12.187
  7. Huang, Q., Ma, W., Yan, X., Chen, Y., Zhu, S. and Shen, S., "Photocatalytic Decomposition of Gaseous HCHO by $Zr_{x}Ti_{1-x}O_{2}$ Catalysts Under UV-vis Light Irradiation with an Energy-saving Lamp," J. Mol. Catal. A-Chem., 366, 261-265(2013). https://doi.org/10.1016/j.molcata.2012.10.003
  8. Puangpetch, T., Sommakettarin, P., Chavadej, S. and Sreethawong, S., "Hydrogen Production from Water Splitting over Eosin Y-Sensitized Mesoporous-assembled Perovskite Titanate Nanocrystal Photocatalysts Under Visible Light Irradiation," Int. J. Hydrog. Energy, 35, 12428-12442(2010). https://doi.org/10.1016/j.ijhydene.2010.08.138
  9. Yu, H., Yan, S., Li, Z., Yu, T. and Zou, Z., "Efcient Visible-lightdriven Photocatalytic $H_{2}$ production over Cr/N-codoped $SrTiO_{3}$," Int. J. Hydrog. Energy, 37, 12120-12127(2012). https://doi.org/10.1016/j.ijhydene.2012.05.097
  10. Cui, W., Feng, L., Xu, C., Lu, S. and Qiu, F., "Hydrogen Production by Photocatalytic Decomposition of Methanol Gas on Pt/$TiO_{2}$ Nano-lm," Catal. Commun.., 5, 533-536(2004). https://doi.org/10.1016/j.catcom.2004.06.011
  11. Inagaki, M., Nakazawa, Y., Hirano, M., Kobayashi, Y. and Toyoda, M., "Preparation of stable anatase-type $TiO_{2}$ and its photocatalytic performance," Int. J. Inorg. Mater., 3, 809-811(2001). https://doi.org/10.1016/S1466-6049(01)00176-3
  12. Dong, D., Li, P., Li, X., Zhao, Q., Zhang, Y., Jia, C. and Li, P., "Investigation on the Photocatalytic Degradation of Pyrene on Soil Surfaces Using Nanometer Anatase $TiO_{2}$ Under UV Irradiation," J. Hazard. Mater., 174, 859-863(2010). https://doi.org/10.1016/j.jhazmat.2009.09.132
  13. Mizoguchi, H., Ueda, K., Orita, M., Moon, S.-C., Kajihara, K., Hirano, M. and Hosono, H., "Decomposition of Water by a $CaTiO_{3}$ Photocatalyst Under UV Light Irradiation," Mater. Res. Bull., 37, 2401-2406(2002). https://doi.org/10.1016/S0025-5408(02)00974-1
  14. Lee, W. W., Chung, W.-H., Huang, W.-S., Lin, W.-C., Lin, W.-Y., Jiang, Y.-R. and Chen, C.-C., "Photocatalytic Activity and Mecha-nism of Nano-cubic Barium Titanate Prepared by a Hydrothermal Method," J. Taiwan. Inst. Chem. E., (2013).
  15. Parayil, S. K., Baltrusaitis, J., Wua, C.-M. and Koodali, R. T., "Synthesis and Characterization of Ligand Stabilized CdS-Trititanate Composite Materials for Visible Light-induced Photocatalytic Water Splitting," Int. J. Hydrog. Energy, 38, 2656-2669(2013). https://doi.org/10.1016/j.ijhydene.2012.12.042
  16. Stengl, V., Bakardjieva, S., Murafa, N., Houskova, V. and Lang, K., "Visible-light Photocatalytic Activity of $TiO_{2}$/ZnS Nanocomposites Prepared by Homogeneous Hydrolysis,"Microporous Mesoporous Mater., 110, 370-378(2008). https://doi.org/10.1016/j.micromeso.2007.06.052
  17. Hao, R., Xiao, X., Zuo, X., Nan, J. and Zhang, W., "Efcient Adsorption and Visible-light Photocatalytic Degradation Oftetracycline Hydrochloride Using Mesoporous BiOI Microspheres," J. Hazard. Mater., 209-210, 137-145(2012). https://doi.org/10.1016/j.jhazmat.2012.01.006
  18. Dong, W., Li, X., Yu, Jie., Guo, W., Li, B., Tan, L. and Li, C., "Porous $SrTiO_{3}$ Spheres with Enhanced Photocatalytic Performance," Mater. Lett., 67, 131-134(2012). https://doi.org/10.1016/j.matlet.2011.09.045
  19. Yu, H., Yan, S., Li, Z., Yu, T. and Zou, Z., "Efcient Visible-light-driven Photocatalytic $H_{2}$ Production over Cr/N-codoped $SrTiO_{3}$," Int. J. Hydrog. Energy, 37, 12120-12127(2012). https://doi.org/10.1016/j.ijhydene.2012.05.097
  20. Zou, J.-P., Zhang, L.-Z., Luo, S.-L., Leng, L.-H., Luo, X.-B., Zhang, M.-J., Luo, Y. and Guo, G.-C., "Preparation and Photocatalytic Activities of Two New Zn-doped $SrTiO_{2}$ and BaTiO3 Photocatalysts for Hydrogen Production from Water Without Cocatalysts Loading," Int. J. Hydrog. Energy, 37, 17068-17077(2012). https://doi.org/10.1016/j.ijhydene.2012.08.133
  21. Zhang, S., Liu, J., Han, Y., Chen, B. and Li, X., "Formation Mechanisms of $SrTiO_{3}$ Nanoparticles Under Hydrothermal Conditions," Mat. Sci. Eng B., 110, 11-17(2004). https://doi.org/10.1016/j.mseb.2004.01.017
  22. Liu, Y., Xie, L., Yang, R., Qu, J., Li, Y. and Li, X., "Synthesis and High Photocatalytic Hydrogen Production of $SrTiO_{3}$ Nanoparticles from Water Splitting Under UV Irradiation," J. Power Sources, 183, 701-707(2008). https://doi.org/10.1016/j.jpowsour.2008.05.057
  23. Burton, A. W., Ong, K., Rea, T., and Chan, I. Y., "On the Estimation of Average Crystallite Size of Zeolites from the Scherrer Equation: A Critical Evaluation of Its Application to Zeolites with One-dimensional Pore Systems," Microporous Mesoporous Mater., 117, 75-90(2009). https://doi.org/10.1016/j.micromeso.2008.06.010
  24. Wang, Q., An, N., Bai, Y., Hang, H., Li, J., Lu, X., Liu, Y., Wang, F., Li, Z. and Lei, Z., "High Photocatalytic Hydrogen Production from Methanol Aqueous Solution Using the Photocatalysts CuS/ $TiO_{2}$," Int. J. Hydrog. Energy, 1-7(2013).
  25. Rusdi, R., Rahman, A. A., Mohamed, N. S., Kamarudin, N. and Kamarulzaman, N., "Preparation and Band Gap Energies of ZnO Nanotubes, Nanorods and Spherical Nanostructures," Powder Technol., 210, 18-22(2011). https://doi.org/10.1016/j.powtec.2011.02.005

Cited by

  1. 분무열분해로 합성한 수전해용 Co3O4의 입자형태에 따른 산소발생 활성에 관한 연구 vol.54, pp.6, 2013, https://doi.org/10.9713/kcer.2016.54.6.854