DOI QR코드

DOI QR Code

The Fuelization Study on the Oil Palm Frond Through Torrefaction

Oil Palm Frond의 반탄화를 통한 연료화 연구

  • Lee, Myung Suk (Department of Chemical & Biological Engineering, Korea University) ;
  • Jeong, Gwangsik (Department of Chemical & Biological Engineering, Korea University) ;
  • Jung, Sang-Jin (LINC, Korea Maritime University) ;
  • Lee, Kwan-Young (Department of Chemical & Biological Engineering, Korea University)
  • 이명석 (고려대학교 화공생명공학과) ;
  • 정광식 (고려대학교 화공생명공학과) ;
  • 정상진 (한국해양대학교 LINC사업단) ;
  • 이관영 (고려대학교 화공생명공학과)
  • Received : 2013.05.16
  • Accepted : 2013.06.20
  • Published : 2013.08.01

Abstract

In this study, we investigated the feasibility of torrefied OPF (oil palm fronds) as the fuel. The torrefaction was performed at 200, 250, 300 and $350^{\circ}C$ during 1 and 2 hours, respectively. As raising the torrefaction temperature and increasing the processing time, the GHV (gross heating value) of torrefied OPFs was increased. Moreover, we found that the torrefaction temperature is more important factor than the processing time. However, the proper torrefaction temperature was asked because the higher torrefaction temperature leaded to the lower torrefied OPF yield. TGA (thermo-gravimetric analysis) data released that the torrefaction at $250^{\circ}C$ could significantly decompose the hemicellulose and the almost cellulose was decomposed at $300^{\circ}C$. In addition, the grindability of biomass was improved after torrefaction, so that it can reduce energy consumption in comminution.

본 연구는 반탄화된 OPF(oil palm fronds)의 연료로써 이용가능성을 알아보았다. OPF는 200, 250, 300, $350^{\circ}C$에서 각각 1시간과 2시간 동안 반탄화를 진행하였다. 반탄화된 OPF는 온도가 높아짐에 따라 그리고 반탄화 시간이 증가됨에 따라 발열량이 증가하였다. 또한, 반탄화 시간보다는 반탄화 온도가 더 중요한 요소였다. 하지만 반탄화 온도가 높아질수록 반탄의 수득률이 감소함으로 적절한 반탄화 온도가 요구되었다. $250^{\circ}C$에서의 반탄화로는 헤미셀룰로오스의 분해가 상당히 진행되고 $300^{\circ}C$에서는 셀룰로오스의 분해까지도 거의 진행됨을 OPF의 열분해 거동으로부터 알 수 있었다. 또한, 반탄화된 OPF는 바이오매스의 grindability를 향상시킴으로 분쇄에 소모되는 에너지를 감소시킴을 예측할 수 있었다.

Keywords

References

  1. Prasetyo, J. and Park, E. Y., "Waste Paper Sludge as A Potential Biomass for Bio-ethanol Production," Korean J. Chem. Eng., 30, 253-261(2013). https://doi.org/10.1007/s11814-013-0003-1
  2. Malilas, W., Kang, S. W., Kim, S. B., Yoo, H. Y., Chulalaksananukel, W. and Kim, S. W., "Lipase from Penicillium Camembertii KCCM 11268: Optimication of Solid State Fermentation and Application to Biodiesel Production," Korean J. Chem. Eng., 30, 405-412(2013). https://doi.org/10.1007/s11814-012-0132-y
  3. Buasri, A., Ksapabutr, B., Panapoy, M. and Chaiyut, N., "Biodiesel Production from Waste Cooking Palm Oil Using Calcium Oxide Supported on Activated Carbon as Catalyst in a Fixed Bed Reactor," Korean J. Chem. Eng., 29, 1708-1712(2012). https://doi.org/10.1007/s11814-012-0047-7
  4. Chaiprasert, P. and Vitidsant, T., "Effects of Promoters on Biomass Gasification Using Nickel/Dolomite Catalyst," Korean J. Chem. Eng., 26, 1545-1549(2009). https://doi.org/10.2478/s11814-009-0259-7
  5. Miccio, F., Svoboda, K., Schosger, J. P. and Baxter, D., "Biomass Gasification in Internal Circulating Fluidized Beds: a Thermodynamic Predictive Tool," Korean J. Chem. Eng., 25, 721-726(2008). https://doi.org/10.1007/s11814-008-0118-y
  6. Sun, H., Song, B. H., Jang, Y. W., Kim, S. D., Li, H. and Chang, J., "The Characteristics of Steam Gasification of Biomass and Waste Filter Carbon," Korean J. Chem. Eng., 24, 341-346(2007). https://doi.org/10.1007/s11814-007-5061-9
  7. Kim, K.-S., Choi, E.-A., Ryu, J.-S., Lee, Y. P., Park, J.-Y., Choi, S.-H. and Park, S.-J., "A Study on Pyrolysis Characterization and Heating Value of Semi-carbonized Wood Chip," Appl. Chem. Eng., 23, 440-444(2012).
  8. Stelt, M. J. C. v. d., Gerhauser, H., Kiel, J. H. A. and Ptasinski, K. J., "Biomass Upgrading by Torrefaction for the Production of Biofuels: A Review," Biomass Bioenerg., 35, 3748-3762(2011).
  9. Lee, J.-W., Kim, Y.-H., Lee, S.-M. and Lee, H.-W., "Torrefaction Characteristics of Wood Chip for the Production of High Energy Density Wood Pellet", Korean Chem. Eng. Res.(HWAHAK KONGHAK), 50, 385-389(2012). https://doi.org/10.9713/kcer.2012.50.2.385
  10. Pentananunt, R., Rahman, A. N. M. M. and Bhattacharya, S. C., "Upgrading of Biomass by Means of Torrefaction," Energy, 15, 1175-1179(1990). https://doi.org/10.1016/0360-5442(90)90109-F
  11. Deng, J., Wang, G.-J., Kuang, J.-H., Zhang, Y.-L., Luo, Y.-H., "Pretreatment of Agricultural Resideues for co-gasification Via Torrefaction," J. Anal. Appl. Pyrolysis, 86, 331-337(2009). https://doi.org/10.1016/j.jaap.2009.08.006
  12. Uemura, Y., Omar, W. N., Tsutsui, T. and Yusup, S. B., "Torrefaction of Oil Palm Wastes," Fuel, 90, 2585-2591(2011). https://doi.org/10.1016/j.fuel.2011.03.021
  13. Chang, S., Zhao, Z., Zheng, A., He, F., Huang, Z. and Li, H., "Characterization of Products from Torrefaction of Sprucewood and Bagasse in an Auger Reactor," Energy Fuels, 26, 7009-7017 (2012).
  14. Wu, K.-T., Tsai, C.-J., Chen, C.-S. and Chen, H.-W., "The Characteristics of Torrefied Microalgae," Appl. Energy, 100, 52-57(2012). https://doi.org/10.1016/j.apenergy.2012.03.002
  15. Strezov, V., Popovic, E., Filkoski, R. V., Shah, P. and Evans, T., "Assessment of the Thermal Processing Behavior of Tobacco Waste", Energy Fuels, 26, 5930-5935(2012). https://doi.org/10.1021/ef3006004
  16. Wannapeera, J., Fungtammasan, B., Worasuwannarak, N., "Effect of Temperature and Holding Time During Torrefaction on the Pyrolysis Behaviors of Woody Biomass," J. Anal. Appl. Pyrolysis, 92, 99-105(2011). https://doi.org/10.1016/j.jaap.2011.04.010
  17. Uemura, Y., Omar, W. N., Othman, N. A. B., Yusup, S. B. and Tsutsui, T., "Effect of Atmosphere on Torrefaction of Oil Palm Wastes," World Renewable Energy Congress 2011, 516-523(2011).
  18. Lim, X. Y. and Andresen, J. M., "Pyro-catalytic Deoxgenated Biooil from Palm Oil Empty Fruit Bunch and fRonds With Boric Oxide in a Fixed-bed Reactor," Fuel Process. Technol., 92, 1796- 1804(2011). https://doi.org/10.1016/j.fuproc.2011.04.033
  19. Mohideen, M. F., Faiz, M., Salleh, H., Zakaria, H. and Raghavan, V. R., "Drying of Oil Palm Frond via Swirling Fluidization Technique," Proceedings of the World Congress on Engineering 2011, 3(2011).
  20. Khor, K. H., Lim, K. O. and Alimuddin, Z. A. Z., "Laboratoryscale Pyrolysis of Oil Palm Trunks," Energy Sources Part A, 32, 518-531(2010). https://doi.org/10.1080/15567030802612374
  21. Strezov, V., Patterson, M., Zymla, V., Fisher, K., Evans, T. J. and Nelson, P. F., "Fundamental Aspects of Biomass Carbonisation," J. Anal. Appl. Pyrolysis, 79, 91-100(2007). https://doi.org/10.1016/j.jaap.2006.10.014
  22. Cao, X., Pignatello, J. J., Li, Y., Lattao, C., Chappell, M. A., Chen, N., Miller, L. F. and Mao, J., "Characterization of Wood Chars Prodced at Different Temperatures Using Advanced Solid- State $^{13}C$ NMR Spectroscopic Techniques," Energy Fuels, 26, 5983-5991(2012). https://doi.org/10.1021/ef300947s
  23. Aziz, M. A., Sabil, K. M., Uemura, Y. and Ismail, L., "A Study on Torrefaction of Oil Palm Biomass," J. Applied Sci., 1-6 (2012).
  24. Tapasvi, D., Khalil, R., Skreiberg, Q., Tran, K.-Q. and Gronli, M., "Torrefaction of Norwegian Birch and Spruce: An Experimental Study Using Macro-TGA," Energy Fuels, 26, 5232-5240 (2012). https://doi.org/10.1021/ef300993q
  25. Chew, J. J. and Doshi, V., "Recent Advances in Biomass Pretreatment - Torrefaction Fundamentals and Technology," Renew. Sust. Energ. Rev., 15, 4212-4222(2011). https://doi.org/10.1016/j.rser.2011.09.017

Cited by

  1. Study on Torrefaction Characteristics of Baggase vol.52, pp.5, 2014, https://doi.org/10.9713/kcer.2014.52.5.672
  2. The Characterization of Woodchip Torrefaction and Byproduct Gas vol.56, pp.6, 2014, https://doi.org/10.5389/KSAE.2014.56.6.055
  3. 바이오매스 연료로서 미활용 농업부산물의 반탄화 특성 vol.59, pp.5, 2013, https://doi.org/10.5389/ksae.2017.59.5.017
  4. Torrefaction Effect on the Grindability Properties of Several Torrefied Biomasses vol.56, pp.4, 2013, https://doi.org/10.9713/kcer.2018.56.4.547