DOI QR코드

DOI QR Code

Synthesis, Characterizations, and Applications of Metal-Ions Incorporated High Quality MCM-41 Catalysts

고품질 금속 이온 첨가 MCM-41 분자체 촉매의 제법, 특성화 및 응용 반응

  • Lim, Steven S. (CRI-Shell Global Solution, Shell Technology Center Houston) ;
  • Haller, Gary L. (Department of Chemical Engineering, Yale University)
  • 임상윤 (CRI-Shell 글로벌 솔루션, 휴스턴 Shell 기술 연구소) ;
  • Received : 2013.04.17
  • Accepted : 2013.05.13
  • Published : 2013.08.01

Abstract

Various metal ions (transition and base metals) incorporated MCM-41 catalysts can be synthesized using colloidal and soluble silica with non-sodium involved process. Transition metal ion-typically $V^{5+}$, $Co^{2+}$, and $Ni^{2+}$-incorporated MCM-41 catalysts were synthesized by isomorphous substitution of Si ions in the framework. Each incorporated metal ion created a single species in the silica framework, single-site solid catalyst, showing a substantial stability in reduction and catalytic activity. Radius of pore curvature effect was investigated with Co-MCM-41 by temperature programmed reduction (TPR). The size of metallic Co clusters, sub-nanometer, could be controlled by a proper reduction treatment of Co-MCM-41 having different pore size and the initial pH adjustment of the Co-MCM-41 synthesis solution. These small metallic clusters showed a high stability under a harsh reaction condition without serious migration, resulting from a direct anchoring of small metallic clusters to the partially or unreduced metal ions on the surface. After a complete reduction, partial occlusion of the metallic cluster surface by amorphous silica stabilized the particles against aggregations. As a probe reaction of particle size sensitivity, carbon single wall nanotubes (SWNT) were synthesized using Co-MCM-41. A metallic cluster stability test was performed by CO methanation using Co- and Ni-MCM-41. Methanol and methane partial oxidations were carried out with V-MCM-41, and the radius of pore curvature effect on the catalytic activity was investigated.

콜로이드 실리카와 가용성 실리카를 이용하여 나트륨이 첨가되지 않은 다양한 금속이온 첨가 MCM-41 촉매를 제조하였다. 전이금속 이온인 $V^{5+}$, $Co^{2+}$$Ni^{2+}$이 MCM-41에 첨가되었을 경우 기공벽 내의 실리콘 이온과 등방치환을 하여 실리카 기공벽 내에서 독립된 단일 활성점을 형성하여 우수한 환원 및 활성 내구성을 보였다. 수소 승온 환원법을 이용하여 Co-MCM-41 촉매의 기공 곡률 반경효과에 대해 검토해 본 결과, 적절한 환원 처리와 기공 크기 및 pH 조절에 따라 코발트 금속입자의 크기를 1nm 이하의 범위에서 조절할 수 있었으며, 이 미세 금속 입자들은 표면 금속이온들과의 결합으로 인해 상당한 고온 안정성이 있음을 발견하였다. 완전 환원 후에도 비정형 실리카의 부분 덮힘으로 인해 금속 입자들의 표면 이동 및 뭉침 현상이 현저히 저하되는 것을 볼 수 있었다. 이들 촉매의 반응 예로 금속 입자 크기에 민감한 단일층 탄소 나노튜브의 합성을 Co-MCM-41을 이용하여 실시하였고, 금속 입자의 안정성 시험반응으로 Co 및 Ni-MCM-41을 이용한 CO 메탄화 반응, V-MCM-41을 이용한 메탄올 및 메탄의 부분 산화반응 및 기공곡률 반경이 촉매활성에 미치는 영향 등을 살펴보았다.

Keywords

References

  1. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. and Beck, J. S., "Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-crystal Template Mechanism," Nature, 359, 710(1992). https://doi.org/10.1038/359710a0
  2. Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmit, K. D., Chu, C. T.-W., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B. and Schlenker, J. L., "A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates," J. Am. Chem. Soc., 114, 10834(1992). https://doi.org/10.1021/ja00053a020
  3. Lim, S., Ciuparu, D., Chen, Y., Yang, Y., Pfefferle, L. and Haller, G. L., "Pore Curvature Effect on the Stability of CoMCM-41 and the Formation of Size-Controllable Subnanometer Co Clusters," J. Phys. Chem. B, 109, 2285(2005). https://doi.org/10.1021/jp048881+
  4. Lim, S. and Haller, G. L., "Preparation of Highly Ordered Vanadium- Substituted MCM-41: Stability and Acidic Properties," J. Phys. Chem. B, 106, 8437(2002). https://doi.org/10.1021/jp0209796
  5. Hatton, B., Landskron, K., Whitnall, W., Perovic, D. and Ozin, G. A., "Past, Present, and Future of Periodic Mesoporous Organosilicas-The PMOs," Accounts Chem. Res., 38(4), 305(2005). https://doi.org/10.1021/ar040164a
  6. Pena, M. L., Kan, Q., Corma, A. and Rey, F., "Synthesis of Cubic Mesoporous MCM-48 Materials from the System $SiO_{2}$: CTAOH/Br:$H_{2}O$," Microporous Mesoporous Mater., 44, 9(2001).
  7. Lim, S., Yang, Y., Ciuparu, D., Wang, C., Chen, Y., Pfefferle, L. and Haller, G. L., "The effect of Synthesis Solution pH on the Physicochemical Properties of Co Substituted MCM-41," Top. Catal., 34, 31(2005). https://doi.org/10.1007/s11244-005-3787-3
  8. Lim, S., Ciuparu, D., Pak, C., Dobek, F., Chen, Y., Harding, D., Pfefferle, L. and Haller, G. L., "Synthesis and Characterization of Highly Ordered Co-MCM-41 for Production of Aligned Single Walled Carbon Nanotubes (SWNT)," J. Phys. Chem. B, 107, 11048(2003). https://doi.org/10.1021/jp0304778
  9. Kruk, M., Jaroniec, M., Sakamoto, Y., Terasaki, O., Ryoo, R. and Hyun Ko, C., "Determination of Pore Size and Pore Wall Structure of MCM-41 by Using Nitrogen Adsorption, Transmission Electron Microscopy, and X-ray Diffraction," J. Phys. Chem. B, 104, 292(2000). https://doi.org/10.1021/jp992718a
  10. Morey, M., Davidson, A., Eckert, H. and Stucky, G., "Pseudotetrahedral $O_{3/2}V=O$ Centers Immobilized on the Walls of a Mesoporous, Cubic MCM-48 Support: Preparation, Characterization, and Reactivity toward Water As Investigated by $^{51}V$ NMR and UVVis Spectroscopies," Chem. Mater., 8, 486(1996). https://doi.org/10.1021/cm950397j
  11. Yang, Y., Du, G., Lim, S. and Haller, G. L., "Radius of Curvature Effect of V-MCM-41 Probed by Methanol Oxidation," J. Catal., 234, 318(2005). https://doi.org/10.1016/j.jcat.2005.06.031
  12. Lim, S., Wang, C., Yang, Y., Ciuparu, D., Pfefferle, L. and Haller, G. L., "Evidence for Anchoring and Partial Occlusion of Metallic Clusters on the Pore Walls of MCM-41 and Effect on the Stability of the Metallic Clusters," Catal. Today, 123, 122(2007). https://doi.org/10.1016/j.cattod.2007.03.005
  13. Yang, Y., Lim, S., Wang, C., Harding, D. and Haller, G. L., "Multivariate Correlation and Prediction of the Synthesis of Vanadium Substituted Mesoporous Molecular Sieves," Microporous Mesoporous Mater., 67, 245(2004). https://doi.org/10.1016/j.micromeso.2003.11.010
  14. Yang, Y., Lim, S., Wang, C., Du, G. and Haller, G. L., "Statistical Analysis of Synthesis of Co-MCM-41 Catalysts for Production of Aligned Single Walled Carbon Nanotubes (SWNT)," Microporous Mesoporous Mater., 74, 133(2004). https://doi.org/10.1016/j.micromeso.2004.06.012
  15. Yang, Y., York, J. D., Xu, J., Lim, S., Chen, Y. and Haller, G. L., "Statistical Design of C10-Co-MCM-41 Catalytic Template for Synthesizing Smaller-Diameter Single-Wall Carbon Nanotubes," Microporous Mesoporous Mater., 86, 303(2005). https://doi.org/10.1016/j.micromeso.2005.07.045
  16. Galeener, F. L., "Planar Rings in Glasses," Solid State Commun., 44, 1037(1982). https://doi.org/10.1016/0038-1098(82)90329-5
  17. Feuston, B. P. and Higgins, J. B., "Model Structures for MCM-41 Materials: A Molecular Dynamics Simulation," J. Phys. Chem., 98, 4459(1994). https://doi.org/10.1021/j100067a037
  18. Reuel, R. C. and Bartholomew, C. H., "The Stoichiometries of $H_{2}$ and CO Adsorptions on Cobalt: Effects of Support and Preparation," J. Catal., 85, 63(1984). https://doi.org/10.1016/0021-9517(84)90110-6
  19. Louis, C., Cheng, Z. X. and Che, M., "Characterization of Nickel/ Silica Catalysts During Impregnation and Further Thermal Activation Treatment Leading to Metal Particles," J. Phys. Chem., 97, 5703(1993). https://doi.org/10.1021/j100123a040
  20. Tzou, M. S., Teo, B. K. and Sachtler, W. M. H., "EXAFS Studies of Rhodium- and Rhodium-Chromium-NaY Zeolite Catalysts: Evidence for Direct Bonding between Metal Particles and Anchoring Ions," Langmuir, 2, 773(1986). https://doi.org/10.1021/la00072a018
  21. Guoan, D., Lim, S., Yang, Y., Wang, C., Pfefferle, L. and Haller, G. L., "Methanation of Carbon Dioxide on Ni-Incorporated MCM-41 Catalysts: The Influence of Catalyst Pretreatment and Study of Steady-State Reaction," J. Catal., 249, 370(2007). https://doi.org/10.1016/j.jcat.2007.03.029
  22. Du, G., Lim, S., Yang, Y., Wang, C., Pfefferle, L. and Haller, G. L., "Catalytic Performance of Vanadium Incorporated MCM-41 Catalysts for the Partial Oxidation of Methane to Formaldehyde," Appl. Catal. A: Gen., 302, 48(2006). https://doi.org/10.1016/j.apcata.2005.12.013
  23. Ciuparu, D., Chen, Y., Lim, S., Haller, G. L. and Pfefferle, L., "Uniform-Diameter Single-Walled Carbon Nanotubes Catalytically Grown in Cobalt-Incorporated MCM-41," J. Phys. Chem. B, 108, 503(2003).
  24. Herrera, J. E., Balzano, L., Borgna, A., Alvarez, W. E. and Resasco, D. E., "Relationship Between the Structure/Composition of Co- Mo Catalysts and Their Ability to Produce Single-Walled Carbon Nanotubes by CO Disproportionation," J. Catal., 204, 129 (2001). https://doi.org/10.1006/jcat.2001.3383
  25. Cheung, C. L., Kurtz, A., Park, H. and Lieber, C. M., "Diameter- Controlled Synthesis of Carbon Nanotubes," J. Phys. Chem. B, 106, 2429(2002). https://doi.org/10.1021/jp0142278
  26. Li, Y., Kim, W., Zhang, Y., Rolandi, M., Wang, D. and Dai, H., "Growth of Single-Walled Carbon Nanotubes from Discrete Catalytic Nanoparticles of Various Sizes," J. Phys. Chem. B, 105, 11424(2001). https://doi.org/10.1021/jp012085b
  27. Lim, S., Li, N., Fang, F., Pinault, M., Zoican, C., Wang, C., Fadel, T., Pfefferle, L. D. and Haller, G. L., "High-Yield Single- Walled Carbon Nanotubes Synthesized on the Small-Pore (C10) Co-MCM-41 Catalyst," J. Phys. Chem. C, 112, 12442(2008). https://doi.org/10.1021/jp710805u