DOI QR코드

DOI QR Code

Effect of Metal Addition and Silica/Alumina Ratio of Zeolite on the Ethanol-to-Aromatics by Using Metal Supported ZSM-5 Catalyst

금속담지 ZSM-5 촉매를 사용한 에탄올로부터 방향족 화합물 제조에 관한 제올라이트의 금속성분 및 실리카/알루미나 비의 영향

  • Kim, Han-Gyu (Research Center for Green Catalysis, Division of Green Chemistry and Engineering Research, Korea Research Institute of Chemical Technology) ;
  • Yang, Yoon-Cheol (Research Center for Green Catalysis, Division of Green Chemistry and Engineering Research, Korea Research Institute of Chemical Technology) ;
  • Jeong, Kwang-Eun (Research Center for Green Catalysis, Division of Green Chemistry and Engineering Research, Korea Research Institute of Chemical Technology) ;
  • Kim, Tae-Wan (Research Center for Green Catalysis, Division of Green Chemistry and Engineering Research, Korea Research Institute of Chemical Technology) ;
  • Jeong, Soon-Yong (Research Center for Green Catalysis, Division of Green Chemistry and Engineering Research, Korea Research Institute of Chemical Technology) ;
  • Kim, Chul-Ung (Research Center for Green Catalysis, Division of Green Chemistry and Engineering Research, Korea Research Institute of Chemical Technology) ;
  • Jhung, Sung Hwa (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University) ;
  • Lee, Kwan-Young (Department of Chemical and Biological Engineering, Korea University)
  • 김한규 (한국화학연구원 그린화학연구단) ;
  • 양윤철 (한국화학연구원 그린화학연구단) ;
  • 정광은 (한국화학연구원 그린화학연구단) ;
  • 김태완 (한국화학연구원 그린화학연구단) ;
  • 정순용 (한국화학연구원 그린화학연구단) ;
  • 김철웅 (한국화학연구원 그린화학연구단) ;
  • 정성화 (경북대학교 화학과) ;
  • 이관영 (고려대학교 화학공학과)
  • Received : 2013.04.01
  • Accepted : 2013.05.01
  • Published : 2013.08.01

Abstract

The catalytic conversion of ethanol to aromatic compounds ETA was studied over ZSM-5 heterogeneous catalysts. The effect of reaction temperature, weight hourly space velocity (WHSV), and addition of water and methanol, which are the potential impurities of bio-ethanol, on the catalytic performance was investigated in a fixed bed reactor. Commercial ZSM-5 catalysts having different Si/$Al_2$ ratios of 23 to 280 and modified ZSM-5 catalysts by addition of metal (Zn, La, Cu, and Ga) were used for the activity and stability tests in ETA reaction. The catalysts were characterized with ammonia temperature programmed desorption ($NH_3$-TPD) and nitrogen adsorption-desorption techniques. The results of catalytic performance revealed that the optimal Si/$Al_2$ ratio of ZSM-5 is about 50~80 and the selectivity to aromatic compounds decreases in the order of Zn/La > Zn > La > Cu > Ga for the modified ZSM-5 catalysts. Among these catalysts from the ETA reaction, Zn-La/ZSM-5 showed the best catalytic performance for the ETA reaction. The selectivity to aromatic compounds was 72% initially and 56% after 30 h over the catalysts at reaction temperature of $437^{\circ}C$ and WHSV of $0.8h^{-1}$.

고정층 반응기를 사용하여 상압에서 에탄올로부터 방향족화합물 제조에 관한 ZSM-5 제올라이트의 금속성분 및 실리카/알루미나 비의 영향을 고찰하였으며, 반응온도, 중량공간속도(WHSV), 반응물인 에탄올에 물 및 메탄올 첨가 영향도 검토하였다. 촉매로는 Si/$Al_2$ 비율이 23~280 범위의 상용 ZSM-5에 Zn, La, Cu, Ga 성분을 함침시켜 촉매 활성 및 안전성 테스트에 사용하였다. 촉매의 특성분석을 위해 암모니아 승온탈착 실험($NH_3$-TPD)과 질소 흡-탈착실험을 수행하였다. 실험결과, 방향족화합물의 선택도에 관한 ZSM-5에 함침한 금속성분과 ZSM-5의 Si/$Al_2$비에 크게 영향을 받았는데, 함침금속은 Zn-La > Zn > La > Cu > Ga 순으로 감소하였으며, ZSM-5의 적절한 산점을 가진 Si/$Al_2$=50, 80에서 가장 우수하였다. 최적 반응온도($437^{\circ}C$)와 공간속도($0.8h^{-1}$)에서 방향족화합물의 선택도는 초기 72%에서 30시간 이후 56%로 서서히 감소하는 경향을 나타내었다.

Keywords

References

  1. V. F. Tret'yakova, Yu. I. Makarfi, K. V. Tret'yakov, N. A. Frantsuzova, and R. M. Talyshinskii, "The Catalytic Conversion of Bioethanol to Hydrocarbon Fuel: A Review and Study," Catalysis in Industry, 2, 402-420(2010). https://doi.org/10.1134/S2070050410040161
  2. N. I. Youming, S. U. N. Aiming, W. U. Xiaoling, H. U. Jianglin, L. I. Tao, and L. I. Guangxing, "Aromatization of Methanol over La/Zn/HZSM-5 Catalysts," Chin. J. Chem. Eng., 19(3), 439-445 (2011). https://doi.org/10.1016/S1004-9541(11)60004-9
  3. Y. I. Makarfi, M. S. Yakimova, A. S. Lermontov, V. I. Erofeev, L. M. Koval, and V. F. Tretiyakov, "Conversion of Bioethanol over Zeolites," Chem. Eng. J., 154, 396-400(2009). https://doi.org/10.1016/j.cej.2009.06.001
  4. A. Szechenyi, R. Barthos, and F. Solymosi, "Aromatization of Ethanol on Mo2C/ZSM Catalysts," Catal. Lett., 110, 1-2(2006). https://doi.org/10.1007/s10562-006-0082-2
  5. Y. Ni, W. Peng, A. Sun, W. Mo, J. Hu, T. Li, and G. Li, "High Selective and Stable Performance of Catalytic Aromatization of Alcohols and Ethers over La/Zn/HZSM-5 Catalysts," J. Ind. Eng. Chem., 16, 503-505(2010). https://doi.org/10.1016/j.jiec.2010.03.011
  6. A. P. Farkas and F. Solymosi, "Adsorption and Reactions of Ethanol on $Mo_{2}C/Mo(100)$," Surf. Sci., 601, 193-200(2007). https://doi.org/10.1016/j.susc.2006.09.023
  7. M. Conte, J. A. Lopez-Sanchez, Q. He, D. J. Morgan, Y. Ryabenkov, J. K. Bartley, A. F. Carley, S. H. Taylor, C. J. Kiely, K. Khalid, and G. J. Hutchings, "Modified Zeolite ZSM-5 for the Methanol to Aromatics Reaction," Catalysis Science & Technology, 2, 105-112(2012). https://doi.org/10.1039/c1cy00299f
  8. M. N. Akhtara, N. Al-Yassira, S. Al-Khattafa, and Jirí Cejkab, "Aromatization of Alkanes over Pt Promoted Conventional and Mesoporous Gallosilicates of MEL Zeolite," Catal. Today, 179, 61-72(2012). https://doi.org/10.1016/j.cattod.2011.06.036
  9. H. Liu, S. Yang, J. Hu, F. Shang, Z. Li, C. Xu, J. Guan, and Q. Kan, "A Comparison Study of Mesoporous Mo/H-ZSM-5 and Conventional Mo/H-ZSM-5 Catalysts in Methane Non-oxidative Aromatization," Fuel Process. Technol., 6, 195-202(2012).
  10. M. Inaba, K. Murata, M. Saito, and I. Takahara, "Ethanol Conversion to Aromatic Hydrocarbons over Several Zeolite Catalysis," React. Kinet. Catal. Lett, 88, 135142(2006).
  11. T. Q. Hoang, X. Zhu, T. Danuthai, L. L. Lobban, D. E. Resasco, and R. G. Mallinson, "Conversion of Glycerol to Alkyl-aromatics over Zeolites," Energy Fuels, 24, 3804-3809(2010). https://doi.org/10.1021/ef100160y
  12. M. Ghiaci, A. Abbaspur, M. Arshadi, and B. Aghabarari, "Internal versus External Surface Active Sites in ZSM-5 Zeolite Part 2: Toluene Alkylation with Methanol and 2-Propanol Catalyzed by Modified and Unmodified $H_{3}PO_{4}$/ZSM-5," Appl. Catal. A: Gen., 316, 32-36(2007). https://doi.org/10.1016/j.apcata.2006.09.014
  13. G. Seo and B. G. Min, "Mechanism of Methanol Conversion over Zeolite and Molecular Sieve Catalysts," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 44, 329-339(2006).
  14. A. Kecskemeti, R. Barthos, and F. Solymosi, "Aromatization of Dimethyl and Diethyl Ethers on $Mo_{2}C$-Promoted ZSM-5 Cata-lysts," J. Catal., 258, 111-120(2008). https://doi.org/10.1016/j.jcat.2008.06.003
  15. R. Barthos, A. Szechenyi, and F. Solymosi, "Decomposition and Aromatization of Ethanol on ZSM-Based Catalysts," J. Phys. Chem. B, 110, 21816-21825(2006). https://doi.org/10.1021/jp063522v
  16. Y. Ni, A. Sun, X. Wu, G. Hai, J. Hu, T. Li, and G. Li, "The Preparation of Nano-sized H[Zn, Al]ZSM-5 Zeolite and Its Application in the Aromatization of Methanol,"Microporous Mesoporous Mater., 143, 435-442(2011). https://doi.org/10.1016/j.micromeso.2011.03.029
  17. Y. Yang, C. Sun, J. Du, Y. Yue, W. Hua, C. Zhang, W. Shen, and H. Xu, "The Synthesis of Endurable B-Al-ZSM-5 Catalysts with Tunable Acidity for Methanol to Propylene Reaction," Catal. Commun., 24, 44-47(2012). https://doi.org/10.1016/j.catcom.2012.03.013
  18. L. Zhang, H. Liu, X. Li, S. Xie, Y. Wang, W. Xin, S. Liu, and L. Xu, "Differences between ZSM-5 and ZSM-11 Zeolite Catalysts in 1-Hexene Aromatization and Isomerization," Fuel Process. Technol., 91, 449-455(2010). https://doi.org/10.1016/j.fuproc.2009.12.003
  19. L. L. Korobitsyna, L. M. Velichkina, A. V. Vosmerikov, V. I. Radomskaya, E. S. Astapova, N. V. Ryabova, and O. A. Agapyatova, "Ultra-high-Silica ZSM-5 Zeolites: Synthesis and Properties," Russian Journal of Inorganic Chemistry, 53, 169-173(2008). https://doi.org/10.1134/S0036023608020034
  20. G. G. Juttu and R. S. Smith, "Catalyst for Aromatization of Alkanes, Process of Making and Process of Using Thereof ," United States Patent 7,186,872 B2(2007).
  21. C. Ding, X. Wang, X. Guo, and S. Zhang, "Characterization and Catalytic Alkylation of Hydrothermally Dealuminated Nanoscale ZSM-5 Zeolite Catalyst," Catal. Commun., 9, 487-493(2007).
  22. C. L. Williams, C.-C. Chang, P. Do, N. Nikbin, S. Caratzoulas, D. G. Vlachos, R. F. Lobo, W. Fan, and P. J. Dauenhauer, "Cycloaddition of Biomass-Derived Furans for Catalytic Production of Renewable p-Xylene," American Chemical Society, 2, 935-939 (2012).

Cited by

  1. Effect of SiC Crystal Phase on Growing ZSM-5 on the Surface of SiC vol.53, pp.2, 2015, https://doi.org/10.9713/kcer.2015.53.2.247
  2. Synthesis of ZSM-5 on the Surface of Foam Type Porous SiC Support vol.53, pp.4, 2015, https://doi.org/10.9713/kcer.2015.53.4.425