DOI QR코드

DOI QR Code

A Study on Prediction of Effective Seebeck Coefficient of Thermoelectric Composites Using Modified Eshelby Model

수정된 에쉘비 모델을 이용한 열전 복합재의 등가지벡계수 예측에 대한 연구

  • Lee, Jae-Kon (School of Mechanical and Automotive Engineering, Catholic Univ. of Daegu)
  • 이재곤 (대구가톨릭대학교 기계자동차공학부)
  • Received : 2013.01.16
  • Accepted : 2013.05.21
  • Published : 2013.08.01

Abstract

A coupled governing equation of thermoelectric materials can be converted into an uncoupled form to predict the effective Seebeck coefficient of thermoelectric composites, where modified Eshelby model is adopted. The predicted results by the present approach for serial- and parallel-connected composites and composite with spherical inclusions are compared with theoretical and experimental results from literatures to be justified. It is shown that the predictions by the theoretical approaches coincide exactly and show in good agreement with the experiments.

열전 복합재의 성능을 파악하기 위해 결합된 형태의 지배방정식은 결합되지 않은 형태로 변환되며, 여기에 수정된 에쉘비 모델을 적용하여 복합재의 등가지벡계수를 유도한다. 모재와 충전재가 직렬 및 병렬로 배치된 복합재와 모재 속에 구형의 충전재가 포함된 복합재에 대한 본 연구결과는 참고 문헌에 알려진 이론적 및 실험적 결과와 비교되며, 이론적 결과와는 완전히 일치하고 실험적 결과와 잘 일치함을 보인다. 지배방정식의 단순화를 통해 열전 복합재의 등가지벡계수는 수정된 에쉘비 모델로 성공적으로 예측될 수 있음을 보였다.

Keywords

References

  1. Heremans, J. P., Thrush, C. M., Morelli, D. T. and Wu, M. C., 2002, "Thermoelectric Power of Bismuth Nanocomposites," Phyical Review Letters, Vol. 88, 216801. https://doi.org/10.1103/PhysRevLett.88.216801
  2. Poudeu, P. F. P., Gueguen, A., Wu, C. I., Hogan, T. and Kanatzidis, M. G., 2010, "High Figure of Merit in Nanostructured N-type $KPb_{m}SbTe_{m+2}$ Thermoelectric Materials," Chemistry of Materials, Vol. 22, pp. 1046-1053. https://doi.org/10.1021/cm902001c
  3. Kim D., Kim, Y., Choi, K., Grunlan, J. C. and Yu, C., 2010, "Improved Thermoelectric Behavior of Nanotube-Filled Polymer Composites with Poly(3,4-ethylenedioxythiophene) Poly(styrene)," ACS NANO, Vol. 4, No. 1, pp. 513-523. https://doi.org/10.1021/nn9013577
  4. Yang, Y., Xie, S. H., Ma, F. Y. and Li, J. Y., 2012. "On the Effective Thermoelectric Properties of Layered Heterogeneous Medium," Journal of Applied Physics, Vol. 111, 013510. https://doi.org/10.1063/1.3674279
  5. Straley, J. P., 1981, "Thermoelectric Properties of Inhomogeneous Materials," Journal of Physics D: Applied Physics, Vol. 14, pp. 2101-2105. https://doi.org/10.1088/0022-3727/14/11/017
  6. Bergman, D. J. and Levy, O., 1991, "Thermo Properties of a Composite Medium," Journal of Applied Physics, Vol. 70, No. 11, pp. 6821-6833. https://doi.org/10.1063/1.349830
  7. Bergman, D. J. and Fel, L. G., 1999, "Enhancement of Thermoelectric Power Factor in Composite Thermoelectrics," Journal of Applied Physics, Vol. 82, No. 12, pp. 8205-8216.
  8. Ryden, D. J., 1974, "The Effects of Isolated Inclusions upon the Transport Properties of Semiconductors," Journal of Physics C: Solid State Physics, Vol. 7, pp. 2655-2669. https://doi.org/10.1088/0022-3719/7/15/014
  9. Webman, I. and Jortner, J., 1977, "Thermo Power in Inhomogeneous Materials," Physical Review B, Vol. 16, No. 6, p. 2959-2964. https://doi.org/10.1103/PhysRevB.16.2959
  10. Kleber, X., Simonet, L., Fouquet, F. and Delnondedieu, M., 2005, "Thermoelectric Power of a Two-dimensional Metal/Metal Composite: A Numerical Approach," Modelling and Simulation in Materials Science and Engineering, Vol. 13, pp. 341-354. https://doi.org/10.1088/0965-0393/13/3/004
  11. Kleber, X., Simonet, L. and Fouquet, F., 2006, "A Computational Study of the Thermoelectric Power of 2D Two Phase Materials," Modelling and Simulation in Materials Science and Engineering, Vol. 14, pp. 21-31. https://doi.org/10.1088/0965-0393/14/1/002
  12. Gather, F., Heiliger, C. and Klar, P. J., 2011, "NeMo: A Network Model Program for Analyzing the Thermoelectric Properties of Meso and Nanostructured Composite Materials," Progress in Solid State Chemistry, Vol. 39, pp. 97-107. https://doi.org/10.1016/j.progsolidstchem.2011.10.001
  13. Gather, F., Heiliger, C. and Klar, P. J., 2011, "Modeling of Interface Roughness in Thermoelectric Composite Materials," Journal of Physics: Condensed Matter, Vol. 23, 335301. https://doi.org/10.1088/0953-8984/23/33/335301
  14. Eshelby, J. D., 1957, "The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems," Proceeding of the Royal Society of London, Vol. A241, pp. 376-396.
  15. Mori, T. and Tanaka, K., 1973, "Average Stress in the Matrix and Average Elastic Energy of Materials with Misfitting Inclusions," Acta Metallurgica, Vol. 21, pp. 571-574. https://doi.org/10.1016/0001-6160(73)90064-3
  16. Hatta, H. and Taya, M., 1986, "Equivalent Inclusion Method for Steady State Heat Conduction in Composites," International Journal of Engineering Science, Vol. 24, pp. 1159-1172. https://doi.org/10.1016/0020-7225(86)90011-X
  17. Lee, J. K., 2008, "Prediction of Thermal Conductivities of Laminated Composites Using Penny-Shaped Fillers," Journal of Mechanical Science and Technology, Vol. 22, pp. 2481-2488. https://doi.org/10.1007/s12206-008-0815-9
  18. Lee, J. K., 2006, "A Study on Effective Thermal Conductivity of Particulate Reinforced Composite," Journal of the Korean Society for Power System Engineering, Vol. 10, pp. 133-138.
  19. MacDonald, D. K. C., 1962, Thermoelectricity: An Introduction to the Principles, Wiley, New York.