DOI QR코드

DOI QR Code

Carbon nanotubes-properties and applications: a review

  • Received : 2013.05.02
  • Accepted : 2013.07.12
  • Published : 2013.07.31

Abstract

The carbon nanotube (CNT) represents one of the most unique inventions in the field of nanotechnology. CNTs have been studied closely over the last two decades by many researchers around the world due to their great potential in different fields. CNTs are rolled graphene with $SP^2$ hybridization. The important aspects of CNTs are their light weight, small size with a high aspect ratio, good tensile strength, and good conducting characteristics, which make them useful as fillers in different materials such as polymers, metallic surfaces and ceramics. CNTs also have potential applications in the field of nanotechnology, nanomedicine, transistors, actuators, sensors, membranes, and capacitors. There are various techniques which can be used for the synthesis of CNTs. These include the arc-discharge method, chemical vaporize deposition (CVD), the laser ablation method, and the sol gel method. CNTs can be single-walled, double-walled and multi-walled. CNTs have unique mechanical, electrical and optical properties, all of which have been extensively studied. The present review is focused on the synthesis, functionalization, properties and applications of CNTs. The toxic effect of CNTs is also presented in a summarized form.

Keywords

References

  1. Wagner FE, Haslbeck S, Stievano L, Calogero S, Pankhurst QA, Martinek KP. Before striking gold in gold-ruby glass. Nature, 407, 691 (2000). http://dx.doi.org/10.1038/35037661.
  2. Franks A. Nanotechnology. J Phys E, 20, 1442 (1987). http://dx.doi.org/10.1088/0022-3735/20/12/001.
  3. Taniguchi N. On the basic concept of 'nano-technology'. Proceedings of the International Conference on Production Engineering, Tokyo, Japan, Part II (1974).
  4. Kroto HW, Heath JR, O'Brien SC, Curl RF, Smalley RE. $C_{60}$: buckminsterfullerene. Nature, 318, 162 (1985). http://dx.doi.org/10.1038/318162a0.
  5. Iijima S. Helical microtubules of graphitic carbon. Nature, 354, 56 (1991). http://dx.doi.org/10.1038/354056a0.
  6. Radushkevich LV, Lukyanovich VM. O strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte (About the structure of carbon formed by thermal decomposition of carbon monoxide on iron substrate). Zurn Fisic Chim, 26, 88 (1952).
  7. Lau AKT, Hui D. The revolutionary creation of new advanced materials--carbon nanotube composites. Composites B, 33, 263 (2002). http://dx.doi.org/10.1016/S1359-8368(02)00012-4.
  8. Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature, 363, 603 (1993). http://dx.doi.org/10.1038/363603a0.
  9. Geim AK, Novoselov KS. The rise of graphene. Nature Mater, 6, 183 (2007). http:dx.doi.org/10.1038/nmat1849.
  10. Sheshmania S, Ashorib A, Fashapoyeha MA. Wood plastic composite using graphene nanoplatelets, Int J Biol Macromol, 58, 6 (2013). http://dx.doi.org/10.1016/j.ijbiomac.2013.03.047.
  11. Saether E, Frankland SJV, Pipes RB. Transverse mechanical properties of single walled carbon nanotube crystals. Part I: determination of elastic moduli. Compos Sci Technol, 63, 1543 (2003). http://dx.doi.org/10.1016/S0266-3538(03)00056-3.
  12. Pichler T. Molecular nanostructures: carbon ahead. Nature Mater, 6, 332 (2007). http://dx.doi.org/10.1038/nmat1898.
  13. Ajayan PM. Bulk metal and ceramics nanocomposites. In: Ajayan PM, Schadler LS, Braun PV, eds. Nanocomposite Science and Technology, Wiley-VCH Verlag GmbH & Co., 1 (2004). http://dx.doi.org/10.1002/3527602127.ch1.
  14. Dresselhaus MS, Lin YM, Rabin O, Jorio A, Souza AG, Pimenta MA, Saito R, Samsonidze G, Dresselhaus G. Nanowires and nanotubes. Mater Sci Engg: C, 23, 129 (2003). https://doi.org/10.1016/S0928-4931(02)00240-0
  15. Prasher RS, Hu XJ, Chalopin Y, Mingo N, Lofgreen K, Volz S, Cleri F, Keblinski P. Turning carbon nanotubes from exceptional heat conductors into insulators. Phys Rev Lett, 102, 105901 (2009). http://dx.doi.org/10.1103/PhysRevLett.102.105901.
  16. Ahmad A, Kholoud MM, Abou E, Reda AA, Abdulrahman AW. Carbon nanotubes, science and technology part (I) structure, synthesis and characterization. Arabian J Chem, 5, 1 (2012). http://dx.doi.org/10.1016/j.arabjc.2010.08.022.
  17. Ebbesen TW, Ajayan PM. Large-scale synthesis of carbon nanotubes. Nature, 358, 220 (1992). http://dx.doi.org/10.1038/358220a0.
  18. Bethune DS, Klang CH, de Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 363, 605 (1993). http://dx.doi.org/10.1038/363605a0.
  19. Journet C, Maser WK, Bernier P, Loiseau A, de la Chapelle ML, Lefrant S, Deniard P, Lee R, Fischer JE. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature, 388, 756 (1997). https://doi.org/10.1038/41972
  20. Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE. Crystalline ropes of metallic carbon nanotubes. Science, 273, 483 (1996). http://dx.doi.org/10.1126/science.273.5274.483.
  21. Mamalis AG, Vogtlander LOG, Markopoulos A. Nanotechnology and nanostructured materials: trends in carbon nanotubes. Precis Eng, 28, 16 (2004). http://dx.doi.org/10.1016/j.precisioneng.2002.11.002.
  22. Li WZ, Xie SS, Qian LX, Chang BH, Zou BS, Zhou WY, Zhao RA, Wang G. Large-scale synthesis of aligned carbon nanotubes. Science, 274, 1701 (1996). http://dx.doi.org/10.1126/science.274.5293.1701.
  23. Xie S, Li W, Pan Z, Chang B, Sun L. Carbon nanotube arrays. Mater Sci Eng A, 286, 11 (2000). http://dx.doi.org/10.1016/S0921-5093(00)00657-2.
  24. Lee CJ, Lyu SC, Kim HW, Park CY, Yang CW. Large-scale production of aligned carbon nanotubes by the vapor phase growth method. Chem Phys Lett, 359, 109 (2002). http://dx.doi.org/10.1016/S0009-2614(02)00648-6.
  25. Hahm MG, Hashim DP, Vajtai R, Ajayan PM. A review: controlled synthesis of vertically aligned carbon nanotubes. Carbon Lett, 12, 185 (2011). http://dx.doi.org/10.5714/CL.2011.12.4.185.
  26. Rao CNR, Govindaraj A, Gundiah G, Vivekchand SRC. Nanotubes and nanowires. Chem Eng Sci, 59, 4665 (2004). http://dx.doi.org/10.1016/j.ces.2004.07.067.
  27. Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T. Electrical conductivity of individual carbon nanotubes. Nature, 382, 54 (1996). http://dx.doi.org/10.1038/382054a0.
  28. Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature, 381, 678 (1996). http://dx.doi.org/10.1038/381678a0.
  29. Chang TE, Jensen LR, Kisliuk A, Pipes RB, Pyrz R, Sokolov AP. Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite. Polymer, 46, 439 (2005). http://dx.doi.org/10.1016/j.polymer.2004.11.030.
  30. Jin FL, Park SJ. Recent advances in carbon-nanotube-based epoxy composites. Carbon Lett, 14, 1 (2013). http://dx.doi.org/10.5714/CL.2012.14.1.001.
  31. Wepasnick KA, Smith BA, Bitter JL, Howard Fairbrother D. Chemical and structural characterization of carbon nanotube surfaces. Anal Bioanal Chem, 396, 1003 (2010). http://dx.doi.org/10.1007/s00216-009-3332-5.
  32. Chandra B, Bhattacharjee J, Purewal M, Son YW, Wu Y, Huang M, Yan H, Heinz TF, Kim P, Neaton JB, Hone J. Molecular-scale quantum dots from carbon nanotube heterojunctions. Nano Lett, 9, 1544 (2009). http://dx.doi.org/10.1021/nl803639h.
  33. Dai H, Wong EW, Lieber CM. Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science, 272, 523 (1996). http://dx.doi.org/10.1126/science.272.5261.523.
  34. Choo H, Jung Y, Jeong Y, Kim HC, Ku BC. Fabrication and applications of carbon nanotube fibers. Carbon Lett, 13, 191 (2012). http://dx.doi.org/10.5714/CL.2012.13.4.191.
  35. Kim KS, Park SJ. Bridge effect of carbon nanotubes on the electrical properties of expanded graphite/poly(ethylene terephthalate) nanocomposites. Carbon Lett, 13, 51 (2012). http://dx.doi.org/10.5714/CL.2012.13.1.051.
  36. Mintmire JW, Dunlap BI, White CT. Are fullerene tubules metallic? Phys Rev Lett, 68, 631 (1992). http://dx.doi.org/10.1103/PhysRevLett.68.631.
  37. Saito R, Fujita M, Dresselhaus G, Dresselhaus MS. Electronic structure of chiral graphene tubules. Appl Phys Lett, 60, 2204 (1992). http://dx.doi.org/10.1063/1.107080.
  38. Tans SJ, Verschueren ARM, Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature, 393, 49 (1998). http://dx.doi.org/10.1038/29954.
  39. Schonenberger C, Bachtold A, Strunk C, Salvetat JP, Forro L. Interference and Interaction in multi-wall carbon nanotubes. Appl Phys A, 69, 283 (1999). http://dx.doi.org/10.1007/s003390051003.
  40. Hone J, Llaguno MC, Nemes NM, Johnson AT, Fischer JE, Walters DA, Casavant MJ, Schmidt J, Smalley RE. Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Appl Phys Lett, 77, 666 (2000). http://dx.doi.org/10.1063/1.127079.
  41. Tans SJ, Devoret MH, Dai H, Thess A, Smalley RE, Geerligs LJ, Dekker C. Individual single-wall carbon nanotubes as quantum wires. Nature, 386, 474 (1997). http://dx.doi.org/10.1038/386474a0.
  42. Delaney P, Di Ventra M, Pantelides ST. Quantized conductance of multiwalled carbon nanotubes. Appl Phys Lett, 75, 3787 (1999). http://dx.doi.org/10.1063/1.125456.
  43. Bandaru PR, Daraio C, Jin S, Rao AM. Novel electrical switching behaviour and logic in carbon nanotube Y-junctions. Nat Mater, 4, 663 (2005). http://dx.doi.org/10.1038/nmat1450.
  44. Cheng Y, Zhou O. Electron field emission from carbon nanotubes. Comptes Rendus Physique, 4, 1021 (2003). http://dx.doi.org/10.1016/S1631-0705(03)00103-8.
  45. Modi A, Koratkar N, Lass E, Wei B, Ajayan PM. Miniaturized gas ionization sensors using carbon nanotubes. Nature, 424, 171 (2003). http://dx.doi.org/10.1038/nature01777.
  46. Yue GZ, Qiu Q, Gao B, Cheng Y, Zhang J, Shimoda H, Chang S, Lu JP, Zhou O. Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based fieldemission cathode. Appl Phys Lett, 81, 355 (2002). http://dx.doi.org/10.1063/1.1492305.
  47. Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 287, 637 (2000). http://dx.doi.org/10.1126/science.287.5453.637.
  48. Ruoff RS, Tersoff J, Lorents DC, Subramoney S, Chan B. Radial deformation of carbon nanotubes by van der Waals forces. Nature, 364, 514 (1993). http://dx.doi.org/10.1038/364514a0.
  49. Palaci I, Fedrigo S, Brune H, Klinke C, Chen M, Riedo E. Radial elasticity of multiwalled carbon nanotubes. Phys Rev Lett, 94, 175502 (2005). http://dx.doi.org/10.1103/PhysRevLett.94.175502.
  50. Yu MF, Kowalewski T, Ruoff RS. Investigation of the radial deformability of individual carbon nanotubes under controlled indentation force. Phys Rev Lett, 85, 1456 (2000). http://dx.doi.org/10.1103/PhysRevLett.85.1456.
  51. Yang YH, Li WZ. Radial elasticity of single-walled carbon nanotube measured by atomic force microscopy. Appl Phys Lett, 98, 041901 (2011). http://dx.doi.org/10.1063/1.3546170
  52. Minary-Jolandan M, Yu MF. Reversible radial deformation up to the complete flattening of carbon nanotubes in nanoindentation. J Appl Phys, 103, 073516 (2008). http://dx.doi.org/10.1063/1.2903438.
  53. Ajayan PM, Stephan O, Colliex C, Trauth D. Aligned carbon nanotube arrays formed by cutting a polymer resin--nanotube composite. Science, 265, 1212 (1994). http://dx.doi.org/10.1126/science.265.5176.1212.
  54. Iijima S, Brabec C, Maiti A, Bernholc J. Structural flexibility of carbon nanotubes. J Chem Phys, 104, 2089 (1996). http://dx.doi.org/10.1063/1.470966.
  55. Chopra NG, Benedict LX, Crespi VH, Cohen ML, Louie SG, Zettl A. Fully collapsed carbon nanotubes. Nature, 377, 135 (1995). http://dx.doi.org/10.1038/377135a0.
  56. Ruoff RS, Lorents DC. Mechanical and thermal properties of carbon nanotubes. Carbon, 33, 925 (1995). http://dx.doi.org/10.1016/0008-6223(95)00021-5.
  57. Dresselhaus MS, Dresselhaus G, Eklund PC. Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego, CA (1996).
  58. Overney G, Zhong W, Tomanek D. Structural rigidity and low frequency vibrational modes of long carbon tubules. Z Phys D, 27, 93 (1993). http://dx.doi.org/10.1007/BF01436769.
  59. Robertson DH, Brenner DW, Mintmire JW. Energetics of nanoscale graphitic tubules. Phys Rev B, 45, 12592 (1992). http://dx.doi.org/10.1103/PhysRevB.45.12592.
  60. Tersoff J. Energies of fullerenes. Phys Rev B, 46, 15546 (1992). http://dx.doi.org/10.1103/PhysRevB.46.15546.
  61. Falvo MR, Clary GJ, Taylor RM 2nd, Chi V, Brooks FP Jr, Washburn S, Superfine R. Bending and buckling of carbon nanotubes under large strain. Nature, 389, 582 (1997). http://dx.doi.org/10.1038/39282.
  62. Endo M, Takeuchi K, Kobori K, Takahashi K, Kroto HW, Sarkar A. Pyrolytic carbon nanotubes from vapor-grown carbon fibers. Carbon, 33, 873 (1995). http://dx.doi.org/10.1016/0008-6223(95)00016-7.
  63. Zhu YQ, Sekine T, Kobayashi T, Takazawa E, Terrones M, Terrones H. Collapsing carbon nanotubes and diamond formation under shock waves. Chem Phys Lett, 287, 689 (1998). http://dx.doi.org/10.1016/S0009-2614(98)00226-7.
  64. Yu MF, Files BS, Arepalli S, Ruoff RS. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett, 84, 5552 (2000). http://dx.doi.org/10.1103/PhysRevLett.84.5552.
  65. Shibutani Y, Shiozaki M, Kugimiya T, Tomita Y. Irreversible deformation of carbon nanotubes under bending. J Jpn Inst Met, 63, 1262 (1999). https://doi.org/10.2320/jinstmet1952.63.10_1262
  66. Li F, Cheng HM, Bai S, Su G, Dresselhaus MS. Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes. Appl Phys Lett, 77, 3161 (2000). http://dx.doi.org/10.1063/1.1324984.
  67. Shen W, Jiang B, Han BS, Xie S. Investigation of the radial compression of carbon nanotubes with a scanning probe microscope. Phys Rev Lett, 84, 3634 (2000). http://dx.doi.org/10.1103/PhysRevLett.84.3634.
  68. Wang ZL, Gao RP, Poncharal P, de Heer WA, Dai ZR, Pan ZW. Mechanical and electrostatic properties of carbon nanotubes and nanowires. Mater Sci Eng C, 16, 3 (2001). http://dx.doi.org/10.1016/S0928-4931(01)00293-4.
  69. Demczyk BG, Wang YM, Cumings J, Hetman M, Han W, Zettl A, Ritchie RO. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater Sci Eng A, 334, 173 (2002). http://dx.doi.org/10.1016/S0921-5093(01)01807-X.
  70. Sinnott SB, Shenderova OA, White CT, Brenner DW. Mechanical properties of nanotubule fibers and composites determined from theoretical calculations and simulations. Carbon, 36, 1 (1998). http://dx.doi.org/10.1016/S0008-6223(97)00144-9.
  71. Yakobson BI. Mechanical relaxation and "intramolecular plasticity" in carbon nanotubes. Appl Phys Lett, 72, 918 (1998). http://dx.doi.org/10.1063/1.120873.
  72. Ru CQ. Effect of van der Waals forces on axial buckling of a double- walled carbon nanotube. J Appl Phys, 87, 7227 (2000). http://dx.doi.org/10.1063/1.372973.
  73. Guanghua G, Tahir C, William AG, III. Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes. Nanotechnology, 9, 184 (1998). http://dx.doi.org/10.1088/0957-4484/9/3/007.
  74. Hernandez E, Goze C, Bernier P, Rubio A. Elastic properties of C and $B_xC_yN_z$ composite nanotubes. Phys Rev Lett, 80, 4502 (1998). http://dx.doi.org/10.1103/PhysRevLett.80.4502.
  75. Ashcroft NW, Mermin ND. Solid State Physics, Harcourt Brace, Orlando, FL (1976).
  76. Kim P, Shi L, Majumdar A, McEuen PL. Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett, 87, 215502 (2001). http://dx.doi.org/10.1103/PhysRevLett.87.215502.
  77. Yu C, Shi L, Yao Z, Li D, Majumdar A. Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett, 5, 1842 (2005). http://dx.doi.org/10.1021/nl051044e.
  78. Maultzsch J, Reich S, Thomsen C, Dobardzic E, Milosevic I, Damnjanovic M. Phonon dispersion of carbon nanotubes. Solid State Commun, 121, 471 (2002). http://dx.doi.org/10.1016/S0038-1098(02)00025-X.
  79. Ishii H, Kobayashi N, Hirose K. Electron-phonon coupling effect on quantum transport in carbon nanotubes using time-dependent wave-packet approach. Physica E, 40, 249 (2007). http://dx.doi.org/10.1016/j.physe.2007.06.006.
  80. Maeda T, Horie C. Phonon modes in single-wall nanotubes with a small diameter. Physica B, 263-264, 479 (1999). http://dx.doi.org/10.1016/S0921-4526(98)01415-X.
  81. Kasuya A, Saito Y, Sasaki Y, Fukushima M, Maedaa T, Horie C, Nishina Y. Size dependent characteristics of single wall carbon nanotubes. Mater Sci Eng A, 217-218, 46 (1996). http://dx.doi.org/10.1016/S0921-5093(96)10357-9.
  82. Popov VN. Theoretical evidence for $T^{1/2}$ specific heat behavior in carbon nanotube systems. Carbon, 42, 991 (2004). http://dx.doi.org/10.1016/j.carbon.2003.12.014.
  83. Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A. Organic functionalization of carbon nanotubes. J Am Chem Soc, 124, 760 (2002). http://dx.doi.org/10.1021/ja016954m.
  84. Hirsch A. Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed, 41, 1853 (2002). http://dx.doi.org/10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-N.
  85. Kim JH, Min BG. Functionalization of multi-walled carbon nanotube by treatment with dry ozone gas for the enhanced dispersion and adhesion in polymeric composites. Carbon Lett, 11, 298 (2010). http://dx.doi.org/10.5714/CL.2010.11.4.298.
  86. Saeed K. Review on the properties, dispersion and toxicology of carbon nanotubes. J Chem Soc Pak, 32, 561 (2010).
  87. Wu HC, Chang X, Liu L, Zhao F, Zhao Y. Chemistry of carbon nanotubes in biomedical applications. J Mater Chem, 20, 1036 (2010). http://dx.doi.org/10.1039/B911099M.
  88. Hersam MC. Progress towards monodisperse single-walled carbon nanotubes. Nat Nanotechnol, 3, 387 (2008). http://dx.doi.org/10.1038/nnano.2008.135.
  89. Wang H. Dispersing carbon nanotubes using surfactants. Curr Opin Colloid Interface Sci, 14, 364 (2009). http://dx.doi.org/10.1016/j.cocis.2009.06.004.
  90. Vaisman L, Wagner HD, Marom G. The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci, 128-130, 37 (2006). http://dx.doi.org/10.1016/j.cis.2006.11.007.
  91. NANOSAFE 2008. Available from: http://www.nanosafe2008.org.
  92. Helland A, Wick P, Koehler A, Schmid K, Som C. Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ Health Perspect, 115, 1125 (2007). http://dx.doi.org/10.1289/ehp.9652.
  93. Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes--the route toward applications. Science, 297, 787 (2002). http://dx.doi.org/10.1126/science.1060928.
  94. Cao A, Zhu H, Zhang X, Li X, Ruan D, Xu C, Wei B, Liang J, Wu D. Hydrogen storage of dense-aligned carbon nanotubes. Chem Phys Lett, 342, 510 (2001). http://dx.doi.org/10.1016/S0009-2614(01)00619-4.
  95. Kar S, Bindal RC, Prabhakar S, Tewari PK, Dasgupta K, Sathiyamoorthy D. Potential of carbon nanotubes in water purification: an approach towards the development of an integrated membrane system. Int J Nucl Desalin, 3, 143 (2008). http://dx.doi.org/10.1504/IJND.2008.020221.
  96. Garcia-Gutierrez MC, Nogales A, Rueda DR, Domingo C, Garcia-Ramos JV, Broza G, Roslaniec Z, Schulte K, Davies RJ, Ezquerra TA. Templating of crystallization and shear-induced self-assembly of single-wall carbon nanotubes in a polymer-nanocomposite. Polymer, 47, 341 (2006). http://dx.doi.org/10.1016/j.polymer.2005.11.018.
  97. Siochi EJ, Working DC, Park C, Lillehei PT, Rouse JH, Topping CC, Bhattacharyya AR, Kumar S. Melt processing of SWCNT-polyimide nanocomposite fibers. Composites B, 35, 439 (2004). http://dx.doi.org/10.1016/j.compositesb.2003.09.007.
  98. Bhattacharyya AR, Potschke P, Abdel-Goad M, Fischer D. Effect of encapsulated SWNT on the mechanical properties of melt mixed PA12/SWNT composites. Chem Phys Lett, 392, 28 (2004). http://dx.doi.org/10.1016/j.cplett.2004.05.045.
  99. Saeed K, Park SY. Preparation of multiwalled carbon nanotube/nylon-6 nanocomposites by in situ polymerization. J Appl Polym Sci, 106, 3729 (2007). http://dx.doi.org/10.1002/app.26942.
  100. Prashantha K, Soulestin J, Lacrampe MF, Claes M, Dupin G, Krawczak P. Multi-walled carbon nanotube filled polypropylene nanocomposites based on masterbatch route: improvement of dispersion and mechanical properties through PP-g-MA addition. Express Polym Lett, 2, 735 (2008). http://dx.doi.org/10.3144/expresspolymlett.2008.87.
  101. Zhang XX, Meng QJ, Wang XC, Bai SH. Poly(adipic acid-hexamethylene diamine)-functionalized multi-walled carbon nanotube nanocomposites. J Mater Sci, 46, 923 (2011). http://dx.doi.org/10.1007/s10853-010-4836-2.
  102. De Vita A, Charlier JC, Blase X, Car R. Electronic structure at carbon nanotube tips. Appl Phys A, 68, 283 (1999). http://dx.doi.org/10.1007/s003390050889.
  103. Bonard JM, Stockli T, Maier F, de Heer WA, Chatelain A, Salvetat JP, Forro L. Field-emission-induced luminescence from carbon nanotubes. Phys Rev Lett, 81, 1441 (1998). http://dx.doi.org/10.1103/PhysRevLett.81.1441.
  104. Rinzler AG, Hafner JH, Nikolaev P, Nordlander P, Colbert DT, Smalley RE, Lou L, Kim SG, Tomanek D. Unraveling nanotubes: field emission from an atomic wire. Science, 269, 1550 (1995). http://dx.doi.org/10.1126/science.269.5230.1550.
  105. Saito Y, Hamaguchi K, Hata K, Uchida K, Tasaka Y, Ikazaki F, Yumura M, Kasuya A, Nishina Y. Conical beams from open nanotubes. Nature, 389, 554 (1997). http://dx.doi.org/10.1038/39221.
  106. Saito Y, Uemura S, Hamaguchi K. Cathode ray tube lighting elements with carbon nanotube field emitters. Jpn J Appl Phys, 37, L346 (1998). http://dx.doi.org/10.1143/JJAP.37.L346.
  107. Rotman D. The nanotube computer. MIT Technol Rev, 105, 36 (2002). http://www.technologyreview.com/featuredstory/401378/the-nanotube-computer/.
  108. Sugie H, Tanemura M, Filip V, Iwata K, Takahashi K, Okuyama F. Carbon nanotubes as electron source in an x-ray tube. Appl Phys Lett, 78, 2578 (2001). http://dx.doi.org/10.1063/1.1367278.
  109. Xia H, Wang Y, Lin J, Lu L. Hydrothermal synthesis of $MnO_2$/CNT nanocomposite with a CNT core/porous $MnO_2$ sheath hierarchy architecture for supercapacitors. Nanoscale Res Lett, 7, 33 (2012). http://dx.doi.org/10.1186/1556-276X-7-33.
  110. Evanoff K, Benson J, Schauer M, Kovalenko I, Lashmore D, Ready WJ, Yushin G. Ultra strong silicon-coated carbon nanotube nonwoven fabric as a multifunctional lithium-ion battery anode. ACS Nano, 6, 9837 (2012). http://dx.doi.org/10.1021/nn303393p.
  111. Lee NS, Chung DS, Han IT, Kang JH, Choi YS, Kim HY, Park SH, Jin YW, Yi WK, Yun MJ, Jung JE, Lee CJ, You JH, Jo SH, Lee CG, Kim JM. Application of carbon nanotubes to field emission displays. Diamond Relat Mater, 10, 265 (2001). http://dx.doi.org/10.1016/S0925-9635(00)00478-7.
  112. Frackowiak E, Beguin F. Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon, 40, 1775 (2002). http://dx.doi.org/10.1016/S0008-6223(02)00045-3.
  113. Meunier V, Kephart J, Roland C, Bernholc J. Ab initio investigations of lithium diffusion in carbon nanotube systems. Phys Rev Lett, 88, 075506 (2002). http://dx.doi.org/10.1103/PhysRevLett.88.075506.
  114. Niu C, Sichel EK, Hoch R, Moy D, Tennent H. High power electrochemical capacitors based on carbon nanotube electrodes. Appl Phys Lett, 70, 1480 (1997). http://dx.doi.org/10.1063/1.118568.
  115. Ma RZ, Liang J, Wei BQ, Zhang B, Xu CL, Wu DH. Processing and performance of electric double-layer capacitors with block-type carbon nanotube electrodes. Bull Chem Soc Jpn, 72, 2563 (1999). https://doi.org/10.1246/bcsj.72.2563
  116. Jurewicz K, Delpeux S, Bertagna V, Beguin F, Frackowiak E. Supercapacitors from nanotubes/polypyrrole composites. Chem Phys Lett, 347, 36 (2001). http://dx.doi.org/10.1016/S0009-2614(01)01037-5.
  117. Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, De Rossi D, Rinzler AG, Jaschinski O, Roth S, Kertesz M. Carbon nanotube actuators. Science, 284, 1340 (1999). http://dx.doi.org/10.1126/science.284.5418.1340.
  118. Wong SS, Joselevich E, Woolley AT, Cheung CL, Lieber CM. Covalently functionalized nanotubes as nanometre- sized probes in chemistry and biology. Nature, 394, 52 (1998). http://dx.doi.org/10.1038/27873.
  119. Collins PG, Bradley K, Ishigami M, Zettl A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science, 287, 1801 (2000). http://dx.doi.org/10.1126/science.287.5459.1801.
  120. Varghese OK, Kichambre PD, Gong D, Ong KG, Dickey EC, Grimes CA. Gas sensing characteristics of multi-wall carbon nanotubes. Sens Actuators B, 81, 32 (2001). http://dx.doi.org/10.1016/S0925-4005(01)00923-6.
  121. Chopra S, Pham A, Gaillard J, Parker A, Rao AM. Carbon-nanotube-based resonant-circuit sensor for ammonia. Appl Phys Lett, 80, 4632 (2002). http://dx.doi.org/10.1063/1.1486481.
  122. Wood JR, Wagner HD. Single-wall carbon nanotubes as molecular pressure sensors. Appl Phys Lett, 76, 2883 (2000). http://dx.doi.org/10.1063/1.126505.
  123. Wood JR, Zhao Q, Frogley MD, Meurs ER, Prins AD, Peijs T, Dunstan DJ, Wagner HD. Carbon nanotubes: from molecular to macroscopic sensors. Phys Rev B, 62, 7571 (2000). http://dx.doi.org/10.1103/PhysRevB.62.7571.
  124. Banhart F, Grobert N, Terrones M, Charlier JC, Ajayan PM. Metal atoms in carbon nanotubes and related nanoparticles. Int J Mod Phys B, 15, 4037 (2001). http://dx.doi.org/10.1142/S0217979201007944.
  125. Park SJ, Lee SY. Hydrogen storage behaviors of carbon nanotubes/ metal-organic frameworks-5 hybrid composites. Carbon Lett, 10, 19 (2009). http://dx.doi.org/10.5714/CL.2009.10.1.019.
  126. Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus MS. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science, 286, 1127 (1999). http://dx.doi.org/10.1126/science.286.5442.1127.
  127. Gadd GE, Blackford M, Moricca S, Webb N, Evans PJ, Smith AM, Jacobsen G, Leung S, Day A, Hua Q. The world's smallest gas cylinders? Science, 277, 933 (1997). http://dx.doi.org/10.1126/science.277.5328.933.
  128. Terrones M, Kamalakaran R, Seeger T, Ruhle M. Novel nanoscale gas containers: encapsulation of $N_2$ in $CN_x$ nanotubes. Chem Commun, (23), 2335 (2000). http://dx.doi.org/10.1039/B008253H.
  129. Trasobares S, Stephan O, Colliex C, Hug G, Hsu WK, Kroto HW, Walton DRM. Electron beam puncturing of carbon nanotube containers for release of stored $N_2$ gas. Eur Phys J B, 22, 117 (2001). http://dx.doi.org/10.1007/BF01322353.
  130. Chambers A, Park C, Baker RTK, Rodriguez NM. Hydrogen storage in graphite nanofibers. J Phys Chem B, 102, 4253 (1998). http://dx.doi.org/10.1021/jp980114l.
  131. Chen P, Wu X, Lin J, Tan KL. High $H_2$ uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science, 285, 91 (1999). http://dx.doi.org/10.1126/science.285.5424.91.
  132. Hirscher M, Becher M, Haluska M, Quintel A, Skakalova V, Choi YM, Dettlaff-Weglikowska U, Roth S, Stepanek I, Bernier P, Leonhardt A, Fink J. Hydrogen storage in carbon nanostructures. J Alloys Compd, 330-332, 654 (2002). http://dx.doi.org/10.1016/S0925-8388(01)01643-7.
  133. Gordon PA, Saeger RB. Molecular modeling of adsorptive energy storage: hydrogen storage in single-walled carbon nanotubes. Ind Eng Chem Res, 38, 4647 (1999). http://dx.doi.org/10.1021/ie990503h.
  134. Meregalli V, Parrinello M. Review of theoretical calculations of hydrogen storage in carbon-based materials. Appl Phys A, 72, 143 (2001). http://dx.doi.org/10.1007/s003390100789.
  135. Lee SM, An KH, Lee YH, Seifert G, Frauenheim T. A hydrogen storage mechanism in single-walled carbon nanotubes. J Am Chem Soc, 123, 5059 (2001). http://dx.doi.org/10.1021/ja003751+.
  136. Darkrim FL, Malbrunot P, Tartaglia GP. Review of hydrogen storage by adsorption in carbon nanotubes. Int J Hydrogen Energy, 27, 193 (2002). http://dx.doi.org/10.1016/S0360-3199(01)00103-3.
  137. Tanaka H, El-Merraoui M, Steele WA, Kaneko K. Methane adsorption on single-walled carbon nanotube: a density functional theory model. Chem Phys Lett, 352, 334 (2002). http://dx.doi.org/10.1016/S0009-2614(01)01486-5.
  138. Dai H, Hafner JH, Rinzler AG, Colbert DT, Smalley RE. Nanotubes as nanoprobes in scanning probe microscopy. Nature, 384, 147 (1996). http://dx.doi.org/10.1038/384147a0.
  139. Kim P, Lieber CM. Nanotube nanotweezers. Science, 286, 2148 (1999). http://dx.doi.org/10.1126/science.286.5447.2148.
  140. Venema LC, Wildoer JWG, Tuinstra HLJT, Dekker C, Rinzler AG, Smalley RE. Length control of individual carbon nanotubes by nanostructuring with a scanning tunneling microscope. Appl Phys Lett, 71, 2629 (1997). http://dx.doi.org/10.1063/1.120161.
  141. Postma HWC, de Jonge M, Yao Z, Dekker C. Electrical transport through carbon nanotube junctions created by mechanical manipulation. Phys Rev B, 62, R10653 (2000). http://dx.doi.org/10.1103/PhysRevB.62.R10653.
  142. Park JY, Yaish Y, Brink M, Rosenblatt S, McEuen PL. Electrical cutting and nicking of carbon nanotubes using an atomic force microscope. Appl Phys Lett, 80, 4446 (2002). http://dx.doi.org/10.1063/1.1485126.
  143. Bachtold A, Hadley P, Nakanishi T, Dekker C. Logic circuits with carbon nanotube transistors. Science, 294, 1317 (2001). http://dx.doi.org/10.1126/science.1065824.
  144. Huang Y, Duan X, Cui Y, Lauhon LJ, Kim KH, Lieber CM. Logic gates and computation from assembled nanowire building blocks. Science, 294, 1313 (2001). http://dx.doi.org/10.1126/science.1066192.
  145. Derycke V, Martel R, Appenzeller J, Avouris P. Carbon nanotube inter- and intramolecular logic gates. Nano Lett, 1, 453 (2001). http://dx.doi.org/10.1021/nl015606f.
  146. Javey A, Wang Q, Ural A, Li YM, Dai HJ. Carbon Nanotube Transistor Arrays for Multistage Complementary Logic and Ring Oscillators. Nano Lett, 2, 929 (2002). https://doi.org/10.1021/nl025647r
  147. Collins PG, Arnold MS, Avouris P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science, 292, 706 (2001). http://dx.doi.org/10.1126/science.1058782.
  148. Blase X, Charlier JC, De Vita A, Car R, Redlich P, Terrones M, Hsu WK, Terrones H, Carroll DL, Ajayan PM. Boron-mediated growth of long helicity-selected carbon nanotubes. Phys Rev Lett, 83, 5078 (1999). http://dx.doi.org/10.1103/PhysRevLett.83.5078.
  149. Akiladevi D, Basak S. Carbon nanotubes (CNTs) production, characterization and its applications. Int J Adv Pharm Sci, 1, 187 (2010). http://dx.doi.org/10.5138/ijaps.2010.0976.1055.01024.
  150. Satishkumar BC, Govindaraj A, Nath M, Rao CNR. Synthesis of metal oxide nanorods using carbon nanotubes as templates. J Mater Chem, 10, 2115 (2000). http://dx.doi.org/10.1039/B002868L.
  151. Choi YM, Lee DS, Czerw R, Chiu PW, Grobert N, Terrones M, Reyes-Reyes M, Terrones H, Charlier JC, Ajayan PM, Roth S, Carroll DL, Park YW. Nonlinear behavior in the thermopower of doped carbon nanotubes due to strong, localized states. Nano Lett, 3, 839 (2003). http://dx.doi.org/10.1021/nl034161n.
  152. Simeonova PP. Update on carbon nanotube toxicity. Nanomedicine, 4, 373 (2009). http://dx.doi.org/10.2217/nnm.09.25.
  153. Shvedova AA, Kagan VE, Fadeel B. Close encounters of the small kind: adverse effects of man-made materials interfacing with the nano-cosmos of biological systems. Annu Rev Pharmacol Toxicol, 50, 63 (2010). http://dx.doi.org/10.1146/annurev.pharmtox.010909.105819.
  154. Oberdorster G. Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med, 267, 89 (2010). http://dx.doi.org/10.1111/j.1365-2796.2009.02187.x.
  155. Warheit DB, Sayes CM, Reed KL, Swain KA. Health effects related to nanoparticle exposures: environmental, health and safety considerations for assessing hazards and risks. Pharmacol Ther, 120, 35 (2008). http://dx.doi.org/10.1016/j.pharmthera.2008.07.001.
  156. Li Z, Hulderman T, Salmen R, Chapman R, Leonard SS, Young SH, Shvedova A, Luster MI, Simeonova PP. Cardiovascular effects of pulmonary exposure to single-wall carbon nanotubes. Environ Health Perspect, 115, 377 (2007). http://dx.doi.org/10.1289/ehp.9688.
  157. Nemmar A, Hoylaerts MF, Hoet PH, Dinsdale D, Smith T, Xu H, Vermylen J, Nemery B. Ultrafine particles affect experimental thrombosis in an in vivo hamster model. Am J Respir Crit Care Med, 166, 998 (2002). http://dx.doi.org/10.1164/rccm.200110-026OC.
  158. Nemmar A, Vanbilloen H, Hoylaerts MF, Hoet PH, Verbruggen A, Nemery B. Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. Am J Respir Crit Care Med, 164, 1665 (2001). http://dx.doi.org/10.1164/ajrccm.164.9.2101036.
  159. Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, Stone V, Brown S, Macnee W, Donaldson K. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol, 3, 423 (2008). http://dx.doi.org/10.1038/nnano.2008.111.
  160. Lam CW, James JT, McCluskey R, Arepalli S, Hunter RL. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol, 36, 189 (2006). http://dx.doi.org/10.1080/10408440600570233.
  161. Stern ST, McNeil SE. Nanotechnology safety concerns revisited. Toxicol Sci, 101, 4 (2008). http://dx.doi.org/10.1093/toxsci/kfm169.
  162. Sydlik U, Gallitz I, Albrecht C, Abel J, Krutmann J, Unfried K. The compatible solute ectoine protects against nanoparticleinduced neutrophilic lung inflammation. Am J Respir Crit Care Med, 180, 29 (2009). http://dx.doi.org/10.1164/rccm.200812-1911OC.
  163. Fenoglio I, Greco G, Tomatis M, Muller J, Raymundo-Pinero E, Beguin F, Fonseca A, Nagy JB, Lison D, Fubini B. Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: physicochemical aspects. Chem Res Toxicol, 21, 1690 (2008). http://dx.doi.org/10.1021/tx800100s.
  164. Johnston HJ, Hutchison GR, Christensen FM, Peters S, Hankin S, Aschberger K, Stone V. A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: the contribution of physico-chemical characteristics. Nanotoxicology, 4, 207 (2010). http://dx.doi.org/10.3109/17435390903569639.
  165. Kayat J, Gajbhiye V, Tekade RK, Jain NK. Pulmonary toxicity of carbon nanotubes: a systematic report. Nanomedicine, 7, 40 (2011). http://dx.doi.org/10.1016/j.nano.2010.06.008.
  166. Tong H, McGee JK, Saxena RK, Kodavanti UP, Devlin RB, Gilmour MI. Influence of acid functionalization on the cardiopulmonary toxicity of carbon nanotubes and carbon black particles in mice. Toxicol Appl Pharmacol, 239, 224 (2009). http://dx.doi.org/10.1016/j.taap.2009.05.019.
  167. Vittorio O, Raffa V, Cuschieri A. Influence of purity and surface oxidation on cytotoxicity of multiwalled carbon nanotubes with human neuroblastoma cells. Nanomedicine, 5, 424 (2009). http://dx.doi.org/10.1016/j.nano.2009.02.006.

Cited by

  1. Superhydrophobic carbon-based materials: a review of synthesis, structure, and applications vol.15, pp.2, 2014, https://doi.org/10.5714/CL.2014.15.2.089
  2. Comprehensive study of threonine adsorption on carbon nanotube: A dispersion complemented density functional theory-based treatment vol.115, pp.22, 2015, https://doi.org/10.1002/qua.24991
  3. Effects of multi-walled carbon nanotube structures on the electrical and mechanical properties of silicone rubber filled with multi-walled carbon nanotubes vol.3, pp.21, 2015, https://doi.org/10.1039/C5TC00729A
  4. in Double-Walled Carbon Nanotube Arrays Studied by Monte Carlo Simulations and Simple Analytical Models vol.120, pp.14, 2016, https://doi.org/10.1021/acs.jpcc.5b08910
  5. A review: synthesis and applications of graphene/chitosan nanocomposites vol.17, pp.1, 2016, https://doi.org/10.5714/CL.2016.17.1.011
  6. Synthesis, characterization, and toxicity of multi-walled carbon nanotubes functionalized with 4-hydroxyquinazoline vol.17, pp.1, 2016, https://doi.org/10.5714/CL.2016.17.1.045
  7. Adsorption Patterns of Helium on Carbon and Cellulose Nanotubes: Molecular Dynamics Simulations vol.12, pp.03, 2017, https://doi.org/10.1142/S1793292017500369
  8. Multipolarization Dynamic Light Scattering of Nonspherical Nanoparticles in Solution vol.121, pp.5, 2017, https://doi.org/10.1021/acs.jpcc.6b10226
  9. Electrochemical Capacitors of Horizontally Aligned Carbon Nanotube Electrodes with Oxygen Plasma Treatment vol.164, pp.7, 2017, https://doi.org/10.1149/2.1251707jes
  10. in Water Based on Histidine-Gold Labeled Multiwalled Carbon Nanotube Electrochemical Sensor vol.2017, pp.1687-8779, 2017, https://doi.org/10.1155/2017/1727126
  11. Metallurgical Challenges in Carbon Nanotube-Reinforced Metal Matrix Nanocomposites vol.7, pp.10, 2017, https://doi.org/10.3390/met7100384
  12. -Amino Acids and Peptides: Synthesis under Phase-Transfer Catalysis Using a Phosphine–Borane Linker. Electrochemical Behavior vol.82, pp.21, 2017, https://doi.org/10.1021/acs.joc.7b01737
  13. Interaction mechanism between serine functional groups and single-walled carbon nanotubes vol.29, pp.2, 2015, https://doi.org/10.1002/poc.3488
  14. Genotoxicity Study of Carbon Nanoforms using a Comet Assay vol.133, pp.2, 2018, https://doi.org/10.12693/APhysPolA.133.306
  15. Evaluation of 1st and 2nd generation of poly(amidoamine) dendrimer functionalized carbon nanotubes for the efficient removal of neptunium vol.315, pp.2, 2018, https://doi.org/10.1007/s10967-017-5652-9
  16. Effect of reinforcements at different scales on mechanical properties of epoxy adhesives and adhesive joints: a review vol.94, pp.13, 2018, https://doi.org/10.1080/00218464.2018.1452736
  17. Multiscale modelling of thermal conductivity of carbon nanotube paraffin nanocomposites vol.5, pp.11, 2018, https://doi.org/10.1088/2053-1591/aade72
  18. Voltammetric determination of catechol and hydroquinone using nitrogen-doped multiwalled carbon nanotubes modified with nickel nanoparticles vol.185, pp.8, 2018, https://doi.org/10.1007/s00604-018-2926-z
  19. Role of Nanotechnology in Cosmeceuticals: A Review of Recent Advances vol.2018, pp.2090-7818, 2018, https://doi.org/10.1155/2018/3420204