DOI QR코드

DOI QR Code

탄성파시험의 이동성 확보를 위한 마이크로폰 센서의 활용

Utilization of a Microphone to Acquire Mobility in Seismic Testing

  • 조성호 (중앙대학교 건설환경공학과) ;
  • 부카리 (중앙대학교 토목공학과) ;
  • 노리나 (중앙대학교 토목공학과)
  • 투고 : 2013.02.20
  • 심사 : 2013.06.11
  • 발행 : 2013.07.30

초록

구조물의 안정성에 대한 사회적 요구는 이를 충족시키기 위한 기술발전으로 이어지게 되었고, 지각구조를 이해하기 위해 개발된 탄성파기법도 구조물의 건전성을 평가하는 비파괴 기법으로 자리매김하게 되었다. 비파괴 탄성파기법의 핵심은 측정대상 매질의 탄성파 속도를 측정하는 것으로, 탄성파의 전파를 측정하는 센서를 필수적으로 사용하여야 한다. 기존의 탄성파기법은 접촉식 센서를 사용하기 때문에 이동중 연속시험이 불가능한 문제점이 있었고, 탄성파 시험의 효율성이 실용적 요구조건에 부합하지 못하는 한계성이 있었다. 본 연구에서는 비접촉식 센서의 일종인 보급형 마이크로폰을 센서로 활용하여 기존 탄성파 시험의 문제점을 극복하고자 하는 연구를 수행하였다. 다짐지반의 실시간 다짐품질 확인, 콘크리트 구조물의 재료강성 및 내부결함의 확인 등을 위한 표면파 시험과 공진시험 등을 마이크로폰 활용대상으로 설정하였고, 마이크로폰센서의 영향인자 연구, 실구조물에 대한 현장시험 등을 수행하였다. 이를 통하여 마이크로폰 센서의 신뢰성과 효율성을 확인할 수 있었으며, 최적의 마이크로폰 활용방안을 제안하였다.

Social demand for the stability of structures lead to the development of the technology to accomplish it. The non-destructive seismic technique, which is able to assess structural integrity of infrastructures, belongs to this category. Seismic technique is focused on the measurement of seismic velocity propagating through the material, and has to utilize sensors coupled to material surface, which does not allow the testing to be performed on the fly. In this paper, a general vocal microphone, which works as a non-contact sensor, was adopted to facilitate seismic testing with mobility and efficiency improved. The target of using microphones was oriented toward quality assessment of compacted subgrade, stiffness evaluation and health monitoring of concrete structures. Experimental parametric study and field applications were performed to investigate reliability and efficiency of microphones. Finally, the optimal test configuration of microphones was suggested for resonance tests and surface-wave tests.

키워드

참고문헌

  1. Bay, J. A., Stokoe, K. H., II, and Jackson, J. D. (1995). "Deve-lopment and preliminary investigation of a rolling dynamic deflectometer." Transportation Research Record 1473, Transportation Research Board (TRB), Washington, D.C., pp. 43-54.
  2. Ramli, B. (2013). Accelerated resonance test based on non-contact sensors for nondestructive assessment of structural integrity of plate-like structures, MSc Thesis, Chung-Ang University.
  3. Bueno, J. L., Stokoe, K. H. II, Allen, J. J. and Kalinski, M. E. (1999). "Evaluation of constructing increased single-lift thicknesses of unbound aggregate bases: Case Study in Georgia." In Trans- portation Research Record 1673, TRB, National Research Council, Washington, D.C., pp. 95-102.
  4. Dziewonski, A., Bloch. S. and Landisman, M. (1969). "A technique for analysis of transient seismic signals." Bull. Seism. Soc. Am. Vol. 59, No. 1, pp. 427-444.
  5. Ewing, W. M. and Jardetzky, W. S. (1957). Elastic waves in layered media, McGraw-Hill Book Companay, Inc.
  6. Joh, S.-H. (1996). Advances in interpretation and analysis techniques for Spectral-Analysis-of-Surface-Waves (SASW) method, Ph.D. Dissertation, The University of Texas at Austin.
  7. Joh, S.-H., Cho, M.-R., Kang, T.-H., Kwon, S. A. and Nam, J. H. (2008). "Pavement integrity scanner to characterize modulus contrast between near-surface and deeper material in concrete pavements." In Transportation Research Record 852, TRB, National Research Council, Washington, D.C., pp. 39-48.
  8. Joh, S.-H., Jang, D.W., Kang, T.-H., Lee, I.-H. (2005). "Evaluation of shear stiffness structure for geological segments by CAPSASW Method." Journal of Korean Geotechnical Society, Vol. 21, No. 4, pp. 71-81.
  9. Joh, S.-H., Kang, T.-H., Kwon, S. A. and Moon, C.-W. (2006). "Accelerated stiffness profiling of aggregate bases and subgrades for quality assessment of field compaction." In Transportation Research Record 2070, TRB, National Research Council, Washington, D.C., pp. 22-31.
  10. Larson, G. D., Martin, J. S. and Scott, W. R., Jr. (2005). "Detection of buried landmines using seismic waves and microphones." In detection and remediation technologies for mines and minelike targets X, Edited by Harmon, R. S., Broach, J. T., Holloway, J. H., Jr., Proc. of SPIE Vol. 5794, SPIE, Bellington, WA.
  11. Norinah, A. R. (2011). Surface wave technique for non-flat geotechnical site characterization, MSc Thesis, Chung-Ang University.
  12. Rix, G. J. and Stokoe, K. H. II. (1989). "Stiffness profiling of pavement of subgrades." In Transportation Research Record 1235, TRB, National Research Council, Washington, D.C., 1989, pp. 1-9.
  13. Ryden, N., Lowe, M. J. S., Cawley, P. (2006). "Multichannel microphone array for non-contact NDT of concrete slabs." Proc. of the 6th Int. Symp. on NDT in Civil Engineering, Ed by I. Al-Qadi and G. Washer, 14-18, Saint Louis, Missouri, United States, pp. 325-331.
  14. Ryden, N., Lowe, M. J. S. and Cawley, P. (2009). "Non-contact surface wave testing of pavements using a rolling microphone array." Proceedings of NDTCE'09 Non-destructive testing in civil engineering, Nantes, France.13.
  15. Sansalone, M. and Carino, N. J. (1986). Impact-echo: A method for flaw detection in concrete using transient stress waves, Rep. No. NBSIR86-3452, National Bureau of Standards, Gaithersburg, Md.
  16. Stokoe, K. H., II, Wright, S. G., Bay, J. A. and Roesset, J. M. (1994). "Characterization of geotechnical sites by SASW method." Geophysical Characteristics of Sites, ISSMFE, Technical Committee 10 for XIII ICSMFE, International Science Publishers, New York, pp. 15-25.
  17. Terrell, R. G., Cox, B. R., Stokoe, K. H., II, Allen, J. J. and Lewis, D. (2003). "Field evaluation of the stiffness of unbound aggregate base layers in inverted flexible pavements." In Transportation Research Record 1837, TRB, National Research Council, Washington, D.C., 2003, pp. 50-60.
  18. Viktorov, I. A. (1967). Rayleigh and lamb waves, Plenum, New York, 1967.
  19. Zhu, J. (2005). Non-contact NDT of concrete structures using air-coupled sensors. PhD Thesis, University of Illinois at Urbana- Champaign.
  20. Zhu, J. and Popovics, J. S. (2005). "Non-contact imaging for surface-opening cracks in concrete with air-coupled sensors." Materials and Structures, Vol. 38, pp. 801-806. https://doi.org/10.1617/14292
  21. Zhu, J. and Popovics, J. S. (2006). "Air-coupled impact-echo method for NDT of concrete." AIP Conference Proceedings, p. 820.