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Abstract

Currently, most automobiles have automatic transmission systems. The gear-shifting strategy
used to generate shift patterns in transmission systems plays an important role in improving
the performance of vehicles. However, conventional transmission systems have a fixed type of
shift map, so it may not be enough to provide an efficient gear-shifting pattern to satisfy the
demands of driver. In this study, we developed an intelligent strategy to handle these problems.
This approach is based on a normalized radial basis function neural network, which can
generate a flexible gear-shift pattern to satisfy the demands of drivers, including comfortable
travel and fuel consumption. The method was verified through simulations.
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1. Introduction

The demand for automatic transmission (AT) systems has increased greatly since the invention
of the electronic transmission control unit (TCU) developed in the early 1980s by Renault
and BMW [1]. The representative AT system is stepped transmission (ST) [2] where a fixed
gear-shift map is provided to reduce the engine torque during gear-shifting, which correctly
matches the oil pressure to the friction elements such as the clutch and band brakes.

However, the fixed gear-shifting map of the ST system has several problems, one of which
is that the fixed map can’t provide adaptive, flexible shift patterns that are suitable for different
driving conditions, so an unnecessary “kick down” phenomenon may occur often. This “kick
down” may cause the driver to feel uncomfortable and result in poor fuel efficiency. Another
problem is that the ST system cannot adapt the gear-shifting time to the habits and inclinations
of the driver, which causes drivers discomfort.

One way to alleviate these problems and provide efficient gear-shifting is to develop more
advanced shift maps that can generate adaptive gear-shift patterns and determine the intelligent
gear-shifting time without changing the transmission hardware and TCU. Methods such as
fuzzy logic [3-6] and neural networks [7, 8] can be used to develop such an advanced system,
but the neural network technique was preferred in this study.

In general, neural networks are recognized as an intelligent method because of their
advantages such as self-organization by learning, robustness against uncertainty, and fault
tolerance. However, the efficiency of neural networks can be reduced in some applications
because of the large numbers of neurons and layers, which incur a long learning period. In
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Figure 1. Standard gear-shifting map of a four-speed automatic
transmission system.

particular, the problem can be very challenging when many
mechanical and environmental factors have to be considered.
Given these considerations, the normalized radial basis func-
tion neural network (NRBFNN) [9] was preferred in this study
instead of the conventional multi-neural network.

The paper is organized as follows. In Section 2, we explain
the conventional gear-shifting method of the AT system. In
Section 3, the proposed intelligent gear-shifting method is de-
scribed that utilizes the NRBFNN. Section 4 presents the overall
structure. In Section 5, simulation results are provided that ver-
ify the effectiveness of this method. Concluding remarks are
given in the final section.

2. Gear-Shifting Control

Gear-shifting control means that a shifting point on a given
fixed gear-shifting map of the TCU is moved to another, as
shown in Figure 1, in terms of the driving velocity (x-axis) and
the throttle valve open rate (y-axis) acquired from the engine
control unit (ECU).

The procedure of gear-shifting can be understood easily using
an example. Assume that the point indicating the current status
of the velocity and throttle valve open rate of the vehicle is
point A. If a driver steps on the accelerator pedal to increase the
current velocity and throttle valve open rate, point A is moved
to point B across the up-shift line (drawn in solid line) and the
shift position of a vehicle changes from the 1st shift position
to the 2nd shift position. If a driver steps off the accelerator
pedal to decrease the velocity and the throttle valve open rate at
point B, point B is moved to point A across the down-shift line
(shown by the dashed line).

The up-shift line is a boundary between the lower position

and the higher position, whereas the down-shift line is a bound-
ary between the higher position and the lower position. These
boundaries are fixed and impossible to change once the shifting
map has been installed on the TCU.

As already mentioned, the fixed type map limits the flexibility
of the gear-shifting strategy to adapt to the driving conditions
and the driver’s inclinations. A viable option for avoiding these
problems is to change the up-shift and down-shift boundary
lines of a shift map automatically to adapt to different driving
conditions and driver inclinations within an admissible range,
which is specified by the maximum or minimum limits pre-
determined by the maximum torque and rotation speed of an
engine.

3. Intelligent Gear-Shifting Strategy Based on
NRBFNN

In this section, we describe the intelligent gear-shifting method
based on NRBFNN, which was developed to address the weak-
ness of the fixed gear-shifting method. First, a brief description
of NRBFNN is provided, as follows.

3.1 Normalized Radial Basis Function Neural Network

Neural networks are used widely because of their learning
capability, their parallel distributed structure, high fault toler-
ance, etc. Although there are many types of structures in neural
networks, the RBFNN adopted by this approach has distinct
advantages: a simple structure with a single hidden layer and a
local mapping capacity for fast learning.

In general, the standard RBFNN comprises three layers, and
a Gaussian radial function is typically used as the activation
function of the hidden neuron. In this study, a normalized
Gaussian radial function, which may be superior to the standard
one [9, 10], is preferred as the activation function of the hidden
neuron. The normalized radial basis function of the hidden
neuron shown in Figure 2 is expressed mathematically as

Zq(x) = exp

(
− llx− cqll2

σ2
q

)
/

l∑
k=1

exp

(
− llx− ckll2

σ2
k

)
,

(1)
where x is the input vector of length m, and cq and σq are the
center vectors of length m and the standard deviation of the qth
neuron in the hidden layer, respectively.

The ith neuron in the output layer is evaluated as

117 | Sang-Hyung Ha and Hong-Tae Jeon



http://dx.doi.org/10.5391/IJFIS.2013.13.2.116

)(1 xz

)(xzl

)(xzq

)(2 xz

q1

1x

mx

jx

1y

iy

ny

iq

nq

Input layer                  Hidden layer                   Output layer                  

Figure 2. Normalized radial basis function neural network.

yi =

l∑
q=1

(ωiqzq+θi) (2)

where ωiq denotes the weight between the qth neuron of the
hidden layer and the ith neuron of the output layer and θi is the
threshold value of the ith output neuron.

In the NRBFNN, three types of parameters need to be ad-
justed to adapt the network to the desired purpose:center vectors
cq, standard deviation σq, and output weights ωiq. The gradient
descent method, which is one of the most popular approaches
for updating cq and ωiq , is used, where the fixed value of σq
is defined as

σq = σ =
d√
2l

(3)

where d is the maximum distance between the chosen centers
and l is the number of centers.

The update rules for learning the centers and weights can be
summarized as follows [9-11]:

cqj(t + 1) = cqj(t) + η1(yd
i − yi)ωiq

zq(x)

σ2
(xj − cqj) (4)

ωiq (t + 1) = ωiq (t) + η2
(
yd
i − yi

)
zq (x) (5)

where cqj is the ith element of center vector cq with length m,
yd
i is the desired output of the ith output neuron, and ωiq and

Figure 3. Overall structure of the intelligent gear-shifting system.

ωiq are the connection weights between the qth hidden neuron
and the ith output neuron, respectively. η1 and η2 are the
learning rates, the values of which may vary between 0 and 1.

3.2 Intelligent Gear-Shifting Map Using NRBFNN

The intelligent gear-shifting strategy uses a flexible shift map to
adapt to various driving conditions, i.e., the habits or inclination
of a driver, road conditions such as uphill or downhill driving,
etc. However, it is difficult to develop a neural network that
solves all these problems so it is more efficient to classify them
into several sub-functions and to construct the corresponding
systems using a hierarchical structure.

As shown in Figure 3, the intelligent gear-shifting system
comprises five modules, where each module has its own func-
tion as follows.

- Module to decide the status of the engine output (Module
1): to evaluate the proximity between the vehicle’s load
and the allowable maximum engine output.
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- Module for the driver’s intention (Module 2): to deter-
mine the driver’s intention when driving.

- Module for the road condition (Module 3): to determine
whether the road is uphill or downhill and whether the
engine brakes may be required.

- Module for the degree of satisfaction (Module 4): to de-
termine the degree of driver satisfaction with the current
shift map.

- Module for the shift position (Module 5): to decide the
final shift position.

More detailed descriptions of each module are given below.

3.2.1 Deciding the status of the engine output (Module 1)

This module decides the load of a vehicle based on information
provided by the ECU. These are represented as follows:

- TMRS(n): Current transmission output rotation speed

- TMRS(n − 1): Previous transmission output rotation
speed

- TE: Engine torque

- TEMAX : Maximum engine torque

- TEACC : Engine torque for acceleration

- Lve: Load of a vehicle

In the mathematical approach, the load of a vehicle (0 <

Lve < 1) is defined as the ratio of the acceleration torque to
the maximum torque, which can be modeled as (according to
the manufacturer: Hyundai Motor Company)

Lve =
TEACC

TEMAX − TE + TEACC
(6)

TEACC = RA · r/(iT · iF · η · t), (7)

RA =
W +W ′

g
× α, (8)

α = TMRS(n)− TMRS(n− 1), (9)

where RA is the acceleration resistance; ris the radius of the
tire; iT is the current transmission ratio, which varies according
to the current shift position; iF is the ratio of the velocity at
the endpoint; ηis the coefficient of the transmission efficiency
at each shift position; tis the torque elasticity; W is the total
weight of a vehicle; W ′ is the partial weight of the rotating part

Figure 4. Module 1 to decide the status of engine output.

Figure 5. Normalized radial basis function neural network for sub-
module M2-A and M2-B of Module 2.

of a vehicle, and g is the acceleration due to gravity. However,
these mathematical models are based on approximations and
the parameters may be altered by the driving conditions, so it is
difficult to determine the optimal value of the load for a vehicle.
Neural networks solve this type of problem via adaptive learn-
ing from experimental data. Figure 4 shows the corresponding
NRBNN used to determine the load of the vehicle. As men-
tioned earlier, the gradient descent method is used to learn the
neural network.

3.2.2 Deciding the driver’s intention (Module 2)

This module is designed to decide the driver’s intention (MA),
which can be classified into a dynamic mode and a safety mode,
which evaluate the driver’s willingness to accelerate (Mm) si-
multaneously. This module comprises two sub-modules: sub-
module M2-A to decide the driver’s dynamic inclination and
sub-module M2-B to evaluate the degree of the driver’s willing-
ness to accelerate, as shown in Figure 5 and Table 1.

Sub-module M2-A evaluates the driver’s inclination MA

based on four inputs: the throttle valve open rate (TH0), the
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Table 1. Input/output variables of sub-modules of Module 2

Sub-module
Variables Input Output

M2-A THo, ∆THo, Rt, Bsw MA

M2-B ∆THo, SHIFTCOM ,
Vs

Mm

Figure 6. Structure of Module 3, which decides the road condition.

variation in the throttle valve open rate (∆TH0), the brake’s
deceleration resistance (Rb), and the brake switch (Bsw). The
relationship between the specified inputs and the output MA

can be determine by learning the neural network using the ex-
perimental data. If output MA is close to 1, the system decides
that the driver strongly favors a dynamic mode.

Sub-module M2-B is designed to judge whether the driver
desires acceleration or deceleration. This module evaluates the
degree of the driver’s willingness to accelerate based on three
inputs: the throttle valve opening rate (TH0), the current shift
position (SHIFTCOM ), and the vehicle’s velocity (VS). The
nonlinear relationship between the corresponding inputs and
the output Mm can be obtained by learning the neural network
using the experimental data. The proximity of output Mm to 1
indicates that the driver wants to accelerate the vehicle.

3.2.3 Deciding the road condition (Module 3)

The role of this module is to decide the road condition and it
comprises five sub-modules, as shown in Figure 6. The function
of each sub-module, as shown in Figure 7 and Table 2, can be
described briefly as follows.

Figure 7. NRBNN for all sub-modules of Module 3.

Table 2. Input/output variables of sub-modules of Module 3

Sub-module
Variables Input Output

M3-A Va, TMRS , Ro,
THo, Bsw

Csd

M3-B THo, Vs, timer ADi

M3-C Bsw, Va, timer BSops, BSopt

M3-D ADi, BSops,
BSopt

DCCsmall,
DCCzero,
DCCbig

M3-E Csd, DCCbig ,
DCCsmall,
DCCzero

Dm, DACC

- Sub-module M3-A: to decide the slope of the road

- Sub-module M3-B: to decide the driver’s willingness to
accelerate downhill

- Sub-module M3-C: to decide the driver’s willingness to
decelerate downhill

- Sub-module M3-D: to decide the driver’s intention to use
the engine brake

- Sub-module M3-E: to make the final decision to operate
the engine brake

Next, each sub-module is explained in detail, and it should be
noted that all of the sub-modules are trained using the gradient
descent method.

1) Sub-module M3-A
In this module, the slope of the road (Csd) is computed from
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four inputs: the acceleration of the vehicle (Va), the output ve-
locity of the AT(TMRS), the throttle valve opening rate (TH0),
and the slope resistance(Rg). The relationship between the spec-
ified inputs and the output Csd can be obtained by learning the
corresponding neural network using experimental data, which
are derived from experiments under various road conditions.

2) Sub-modules M3-B and M3-C
In sub-module M3-B, the driver’s willingness to accelerate
downhill can be determined from the timer, the throttle valve
opening rate (TH0), and the velocity of the vehicle (VS). The
driver’s willingness to decelerate downhill in sub-module M3-C
can also be decided from the timer, the brake switch (Bsw),
and the acceleration of the vehicle (Va). The relationship be-
tween the specified inputs and the corresponding outputs can
be obtained by learning the relevant neural networks using ex-
perimental data.

3) Sub-module M3-D
This module evaluates the degree of the driver’s willingness
(i.e., engine brake selection) to decelerate based on three inputs:
ADi, BSops, and BSopi. The willingness to decelerate depends
on the number of driver brake operations, so the outputs of the
previous sub-modules M3-B and M3-C become the inputs of
this module. The degree can be classified into three levels: high
deceleration (DCCbig), low deceleration (DCCsmall), and zero
deceleration (DCCzero).

4) Sub-module M3-E
In this module, the degree of down-shift when operating the
engine brake (DACC) and the road condition (Dm) are deter-
mined from the slope of road Csdand the outputs of Module
M3-D. Dm = 1 and Dm = 0 denote a downhill road and a flat
road, respectively. The output DACC is determined as follows:
·When Dm = 0, DACC = K0

·When Dm = 1,

DACC =


K0 when the output of M3−D is DCCzero

K1 when the output of M3−D is DCCsmall

K2 when the output of M3−D is DCCbig

where K0, K1, and K2 indicate no shift, one down-shift, and two
down-shifts by operating the engine brake, respectively. The re-
lationships between the inputs stated above and the correspond-
ing outputs can be obtained by learning the neural networks
using experimental data.

Figure 8. Module 4 to decide the degree of satisfaction.

3.2.4 Deciding the degree of satisfaction (Module 4)

This module (Figure 8) determines the degree (Sk) of driver sat-
isfaction with the current shift map. The outputs (DM , DACC)
of Module 3 and other variables, such as the throttle valve open-
ing rate (TH0), brake deceleration resistance (Rb), brake switch
(Bsw), and current shift position (SHIFTCOM ), are used to de-
cide the Sk. This module plays a role in analyzing the driver’s
inclination, and the results are used to make the next adjustment
of the shift map. When Sk is relatively high, the current shift
map remains unchanged. Otherwise, some adjustment will be
made.

3.2.5 Decision module for the shift position (Module 5)

This module (Figure 3) determines the final gear-shifting rate
Mp based on all of the outputs from Modules 1–4. The rate
Mp has a value between 0 and 1, which is computed as follows:

Mp = (DACC+δ)DM+Df (1−DM ) (10)

Df = MA(1−Mm)+ Mm(1−Lve) (11)

where δ (, Sd - Sk) is the difference between the highest de-
gree (Sd) and the current degree (Sk) of the driver’s satisfaction.

Using the rate Mp, the final shift map position is decided as
follows:

SMfinal=SM current+Mp (SMmax−SM current) (12)

where SM current is the current shift map position and SMmax

is the maximum shift map position within the admissible range.

4. Simulation Results

A dynamic model of the Hyundai Sonata with a Ricardo engine
was used in the simulation to verify the effectiveness of the
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Figure 9. Slope of road.

Figure 10. Wheel revolutions per minute (RPM).

proposed approach. The simulation results are examined from
several important aspects, particularly the number of times
that gear-shifting occurred during the test. In general, it is
very important to reduce the number of times that unnecessary
gear-shifts occur because the “jerk” phenomenon caused by
gear-shifting makes a driver uncomfortable. The second aspect
is how long a vehicle remains at a high-speed in the high gear-
stage. It is well-known that remaining in the high-gear stage
during high-speed driving leads to greater fuel economy. The
last aspect considers how long the vehicle can keep accelerating
in the lower-gear stage. Acceleration in the low-gear stage
increases the torque of the engine to change the velocity of the
vehicle smoothly.

Figure 9 shows the slope of the road where the simulation
was performed, and Figure 10 shows the wheel revolutions
per minute (RPM) for the vehicle. In these figures, the x-axis
denotes the number of clocks (or iterations) generated in the
TCU. It should be noted that each clock is equivalent to 0.016
sec and the number of clocks can be considered as a proxy of
time.

Figure 10 shows that the driver required an abrupt accelera-
tion between the 4,000th and 5,000th iterations, before main-
taining an almost constant speed after 6,000 iterations. Thus, to

Figure 11. Standard shift map.

Figure 12. Intelligent shift map.

increase the degree of satisfaction, the lower gear-stage must be
maintained between the 4,000th and 5,000th iterations, whereas
the higher gear-stage is required after 6,000 iterations to reduce
the fuel consumption.

Figures 11 and 12 show the gear-shifting results derived from
the standard shift map and the intelligent shift map produced in
this study, respectively. Figure 11 shows that the total number
of gear-shifts was 16 and that the gear-4 stage with two gear
shifts was maintained after 6000 iterations. Figure 12 also
shows that the number of gear-shifts was reduced to 12 and
that the gear-4 stage was maintained longer than the previous
one. These results indicate that the proposed approach is more
effective than the conventional method in several respects.

5. Conclusions

In this study, we developed an intelligent gear-shifting strategy,
which may have a major role in AT systems. To improve the
capacity to adapt to different driving conditions and driver incli-
nations, the proposed method was developed using a NRBFNN,
which has distinct advantages, including a simple structure, fast
learning, local mapping, and fault tolerance. Compared with the
standard method, the intelligent shift map can reduce the total
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number of gear-shifts, which makes a driver more comfortable
and provides sufficient driving power. The effectiveness of the
proposed method was verified through simulations.

In the future, we will study how to reduce the number of
hidden neurons. In general, the radial basis function has no
orthogonal properties and does not require unnecessary neurons.
The optimal structure of NRBF will make the intelligent shift
map more advanced, and it has wide applications.
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