DOI QR코드

DOI QR Code

태양전지 적용을 위한 poly(oligothiophene-alt-benzothiadiazole)s의 합성과 특성 분석

Synthesis and Characterization of Low-bandgap Poly(oligothiophene-alt-benzothiadiazole)s for Photovoltaic Application

  • Lee, Yoonkyoo (Department of Materials Science and Engineering, Seoul National University) ;
  • Jung, Jae Woong (Department of Materials Science and Engineering, Seoul National University) ;
  • Jo, Won Ho (Department of Materials Science and Engineering, Seoul National University)
  • 투고 : 2012.12.25
  • 심사 : 2013.01.31
  • 발행 : 2013.02.28

초록

Two kinds of low-bandgap alternating copolymers composed of thiophene and benzothiadiazole were synthesized via the Stille coupling reaction. The effect of number of alkyl groups attached to oligothiophenes in the repeating unit of the copolymers on their optical, electrochemical, and photovoltaic properties was systematically investigated. One of the new polymers, poly(3,3"-dihexyl-2,2':5',2"-terthiophene-alt-2,1,3-benzothiadiazole) (P1), has better intermolecular packing than the other poly(3,3',3"-trihexyl-2,2':5',2"-terthiophene-alt-2,1,3-benzothiadiazole) (P2), and thus P1 is more beneficial for achieving high charge carrier mobility. P1-based device shows the power conversion efficiency as high as 2.19% when blended with [6,6]-phenyl-$C_{71}$-butyric acid methyl ester after thermal treatment at $170^{\circ}C$ for 30 min.

키워드

참고문헌

  1. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, "Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions", Science, 1995, 270, 1789-1791. https://doi.org/10.1126/science.270.5243.1789
  2. K. M. Coakley and M. D. McGehee, "Conjugated Polymer Photovoltaic Cells", Chem Mater, 2044, 16, 4533-4542. https://doi.org/10.1021/cm049654n
  3. V. D. Mihailetchi, L. J. A. Koster, P. W. M. Blom, C. Melzer, B. de Boer, J. K. J. van Duren, and R. A. J. Janssen, "Compositional Dependence of the Performance of Poly(p-phenylene vinylene): Methanofullerene Bulk-Heterojunction Solar Cells", Adv Funct Mater, 2005, 15, 795-801. https://doi.org/10.1002/adfm.200400345
  4. H. Xin, G. Ren, F. S. Kim, and S. A. Jenekhe, "Bulk Heterojunction Solar Cells from Poly(3-butylthiophene)/Fullerene Blends: In Situ Self-Assembly of Nanowires, Morphology, Charge Transport, and Photovoltaic Properties", Chem Mater, 2008, 20, 6199-6207. https://doi.org/10.1021/cm801324m
  5. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, "High-efficiency Solution Processable Polymer Photovoltaic Cells by Self-organization of Polymer Blends" Nat Mater, 2005, 4, 864-868. https://doi.org/10.1038/nmat1500
  6. W. L. Ma, C. Y. Yang, X. Gong, K. H. Lee, and A. J. Heeger, "Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology", Adv Funct Mater, 2005, 15, 1617-1622. https://doi.org/10.1002/adfm.200500211
  7. N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Bellette, G. Durocher, Y. Tao, and M. Leclerc, "Toward a Rational Design of Poly(2,7-Carbazole) Derivatives for Solar Cells", J Am Chem Soc, 2008, 130, 732-742. https://doi.org/10.1021/ja0771989
  8. J. Y. Kim, Y. Qin, D. M. Stevens, O. Ugurlu, V. Kalihari, M. A. Hillmyer, and C. D. Frisbie, "Low Band Gap Poly(thienylene vinylene)/Fullerene Bulk Heterojunction Photovoltaic Cells", J Phys Chem C, 2009, 113, 10790-10797. https://doi.org/10.1021/jp902199q
  9. J. Kim, S. H. Park, S. Cho, Y. Jin, J. Kim, I. Kim, J. S. Lee, J. H. Kim, H. Y. Woo, K. Lee, and H. Suh, "Low-bandgap Poly(4H-cyclopentadef]phenanthrene) Derivatives with 4,7-dithienyl-2,1,3-benzothiadiazole Unit for Photovoltaic cells" , Polymer, 2010, 51, 390-396. https://doi.org/10.1016/j.polymer.2009.12.009
  10. Y. Zhang, S. K. Hau, H. Yip, Y. Sun, O. Acton, and A. K. Jen, "Efficient Polymer Solar Cells Based on the Copolymers of Benzodithiophene and Thienopyrroledione", Chem Mater, 2010, 22, 2696-2698. https://doi.org/10.1021/cm100417z
  11. W. Yue, Y. Zhao, H. Tian, D. Song, Z. Xie, D. Yan, Y. Geng, and F. Wang, "Poly(oligothiophene-alt-benzothiadiazole)s: Tuning the Structures of Oligothiophene Units Toward High-Mobility "Black" Conjugated Polymers", Macromolecules, 2009, 42, 6510-6518. https://doi.org/10.1021/ma900906t
  12. J. Hou, H. Chen, S. Zhang, and Y. Yang, "Synthesis and Photovoltaic Properties of Two Benzo1,2-b:3,4-b']dithiophene-Based Conjugated Polymers", J Phys Chem C, 2009, 113, 21202-21207. https://doi.org/10.1021/jp9060413
  13. J. Tsai, W. Lee, W. Chen, C. Yu, G. Hwang, and C. Ting, "New Two-Dimensional ThiopheneAcceptor Conjugated Copolymers for Field Effect Transistor and Photovoltaic Cell Applications", Chem Mater, 2010, 22, 3290-3299. https://doi.org/10.1021/cm100661z
  14. S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, "Bulk Heterojunction Solar Cells with Internal Quantum Efficiency Approaching 100%", Nat Photonics, 2009, 3, 297-302. https://doi.org/10.1038/nphoton.2009.69
  15. M. Zhang, H. N. Tsao, W. Pisula, C. Yang, A. K. Mishra, and K. Mullen, "Field-Effect Transistors Based on a BenzothiadiazoleCyclopentadithiophene Copolymer", J Am Chem Soc, 2007, 129, 3472-3473. https://doi.org/10.1021/ja0683537
  16. C. Yang, S. Cho, R. C. Chiechi, W. Walker, N. E. Coates, D. Moses, A. J. Heeger, and F. Wudl, "VisibleNear Infrared Absorbing Dithienylcyclopentadienone-Thiophene Copolymers for Organic Thin-Film Transistors", J Am Chem Soc, 2008, 130, 16524-16526. https://doi.org/10.1021/ja806784e
  17. J. Lu, F. Liang, N. Drolet, J. Ding, Y. Tao, and R. Movileanu, "Crystalline Low Band-gap Alternating Indolocarbazole and Benzothiadiazole-cored Oligothiophene Copolymer for Organic Solar Cell Applications", Chem Commun, 2008, 42, 5315-5317.
  18. H. Xin, X. Guo, F. S. Kim, G. Ren, M. D. Watson, and S. A. Jenekhe, "Efficient Solar Cells Based on a New Phthalimide-based Donor-acceptor Copolymer Semiconductor: Morphology, Charge-transport, and Photovoltaic Properties", J Mater Chem, 2009, 19, 5303-5310. https://doi.org/10.1039/b900073a
  19. Y. Li, H. Li, B. Xu, Z. Li, F. Chen, D. Feng, J. Zhang, and W. Tian, "Molecular Structure-property Engineering for Photovoltaic Applications: Fluorene-acceptor Alternating Conjugated Copolymers with Varied Bridged Moieties", Polymer, 2010, 51, 1786-1795. https://doi.org/10.1016/j.polymer.2010.01.039
  20. A. P. Zoombelt, M. Fonrodona, M. M. Wienk, A. B. Sieval, J. C. Hummelen, and R. A. J. Janssen, "Photovoltaic Performance of an Ultrasmall Band Gap Polymer", Org Lett, 2009, 11, 903-906. https://doi.org/10.1021/ol802839z
  21. E. Bundgaard, and F. C. Krebs, "Low-band-gap Conjugated Polymers Based on Thiophene, Benzothiadiazole, and Benzobis (thiadiazole)", Macromolecules, 2006, 39, 2823-2831. https://doi.org/10.1021/ma052683e
  22. Y. Wei, Y. Yang, and J. Yeh, "Synthesis and Electronic Properties of Aldehyde End-Capped Thiophene Oligomers and Other ${\alpha},{\omega}$-Substituted Sexithiophenes", Chem Mater, 1996, 8, 2659-2666. https://doi.org/10.1021/cm960182p
  23. Y. Lee, T. P. Russell, and W. H. Jo, "Synthesis and Photovoltaic Properties of Low-bandgap Alternating Copolymers Consisting of 3-hexylthiophene and [1,2,5]thiadiazolo[3,4-g]quinoxaline Derivatives", Org Electron, 2010, 11, 846-853. https://doi.org/10.1016/j.orgel.2010.01.027
  24. Q. Hou, Q. Zhou, Y. Zhang, W. Yang, R. Yang, and Y. Cao, "Synthesis and Electroluminescent Properties of High-Efficiency Saturated Red Emitter Based on Copolymers from Fluorene and 4,7-Di(4-hexylthien-2-yl)-2,1,3-benzothiadiazole", Macromolecules, 2004, 37, 6299-6305. https://doi.org/10.1021/ma049204g
  25. J. Yang, Q. Hou, W. Yang, C. Zhang, and Y. Cao, "Deep-Red Electroluminescent Polymers: Synthesis and Characterization of New Low-Band-Gap Conjugated Copolymers for Light-Emitting Diodes and Photovoltaic Devices", Macromolecules, 2005, 38, 244-253. https://doi.org/10.1021/ma047969i
  26. C. Kanimozhi, P. Balraju, G. D. Sharma, and S. Patil, "Synthesis of Diketopyrrolopyrrole Containing Copolymers: A Study of Their Optical and Photovoltaic Properties", J Phys Chem B, 2010, 114, 3095-3103. https://doi.org/10.1021/jp909183x
  27. M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, "Design Rules for Donors in Bulk-Heterojunction Solar Cells-Towards 10% Energy-Conversion Efficiency", Adv Funct Mater, 2006, 18, 789-794. https://doi.org/10.1002/adma.200501717
  28. A. P. Zoombelt, M. Fonrodona, M. G. R. Turbiez, M. M. Wienk, and R. A. J. Janssen, "Synthesis and Photovoltaic Performance of a Series of small Band Gap Polymers", J Mater Chem, 2009, 19, 5336-5342. https://doi.org/10.1039/b821979f
  29. S. Gunes, H. Neugebauer, and N. S. Sariciftci, "Conjugated Polymer-Based Organic Solar Cells", Chem Rev, 2007, 107, 1324-1338. https://doi.org/10.1021/cr050149z
  30. Z. Peet, J. Y. Kim, N. E. Coates, W. I. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, "Efficiency Enhancement in Low-bandgap Polymer Solar Cells by Processing with Alkane Dithiols", Nat Mater, 2007, 6, 497-500. https://doi.org/10.1038/nmat1928
  31. D. M. Stevens, Y. Qin, M. A. Hillmyer, and C. D. Frisbie, "Enhancement of the Morphology and Open Circuit Voltage in Bilayer Polymer/Fullerene Solar Cells", J Phys Chem C, 2009, 113, 11408-11415. https://doi.org/10.1021/jp902198y
  32. P. N. Murgatroyd, "Theory of Space-charge-limited Current Enhanced by Frenkel Effect", J Phys D: Appl Phys, 1970, 3, 151-156. https://doi.org/10.1088/0022-3727/3/2/308