DOI QR코드

DOI QR Code

LED의 파장 및 광도, 공기주입이 Pavlova lutheri와 Phaeodactylum tricornutum의 최적 성장에 미치는 영향

Effect of Light-Emitting Diode Wavelength, Light Intensity and Air Flow Ration on Optimal Growth of Pavlova lutheri and Phaeodactylum tricornutum

  • 최보람 (부경대학교 환경공학과) ;
  • 김동수 (부경대학교 해양바이오신소재학과) ;
  • 이태윤 (부경대학교 환경공학과)
  • Choi, Bo-Ram (Department of Environmental Engineering, Pukyong National University) ;
  • Kim, Dong-Soo (Department of Marine Bio-materials and Aquaculture, Pukyong National University) ;
  • Lee, Tae-Yoon (Department of Environmental Engineering, Pukyong National University)
  • 투고 : 2013.01.22
  • 심사 : 2013.06.05
  • 발행 : 2013.06.27

초록

The purpose of this study was to determine optimum condition of Pavlova lutheri and Phaeodactylum tricornutum. Detailed studies were carried out on the effects of various wavelengths of light-emitting diodes (LEDs), light intensities and air flow rations. For the Pa. lutheri, cell growth rates and maximum cell concentrations were similar regardless of wavelengths and air flow rates. Among the different light intensities, cell concentration increased when light intensity of red LED increased. For Ph. tricornutum, red LED was found to be the most effective light source, and light intensity of 3,100 Lux resulted in the most effective for the cultivation of Ph. tricornutum. Different air flow rates were tested to overcome shading effects due to denser cell concentration in the solution. Aeration of 0.8 vvm was determined to be the optimum aeration rate for the cultivation of Ph. tricornutum. Especially, five and two times greater cell concentrations of Pa. lutheri and Ph. tricornutum, respectively, were observed when air was applied.

키워드

참고문헌

  1. Choi, S. H., Y. T. Oh, and J. K. So (2006) Characterisrics of exhaust emission by the application of biodiesel fuel and Oxygenates as an alternative fuel in an agricultural diesel engine. J. Biosyst. Eng. 31: 457-462. https://doi.org/10.5307/JBE.2006.31.6.457
  2. Lim, Y. K., S. C. Shin, E. S. Yim, and H. O. Song (2008) The effective product method of biodeisel. J. Korean Ind. Eng. Chem. 19: 137-144.
  3. Park, J. I., H. C. Woo, and J. H. Lee (2008) Production of bioenergy from marineaAlgae: Status and perspectives. Korean Chem. Eng. Res. 46: 833-844.
  4. Agarwal, A. K. (2007) Biofuel (alcohols and biodiesel) applications as fuels for internal combustion Engines. Progr. Energ. Combust. Sci. 33: 233-271. https://doi.org/10.1016/j.pecs.2006.08.003
  5. Apt, K. E. and P. W. Behrens (1999) Commercial developments in microalgal biotechnology. J. Phycol. 35: 215-226. https://doi.org/10.1046/j.1529-8817.1999.3520215.x
  6. Sivonen, K. (1996) Cyanobacterial toxins and toxin production. Phycologia 35: 12-24. https://doi.org/10.2216/i0031-8884-35-6S-12.1
  7. Brown M. R., S. W. Jeffrey, J. K. Volkman, and G. A. Dunstan (1997) Nutritional properties of microalgae for mariculture. Aquaculture 151: 315-331. https://doi.org/10.1016/S0044-8486(96)01501-3
  8. Ponis E, G, Parisi, J. R. LeCoz, C. Zittelli, and M. R. Tredici (2006) Effect of the culture system and culture technique on biochemical characteristics of Pavlova lutheri and its nutritional value for Crassostrea gigas larvae. Aquac Nut. 12: 322-329. https://doi.org/10.1111/j.1365-2095.2006.00411.x
  9. Javanmardian, M. and B. O. Palsson (1991) High density photoautotrophic cultures - Design, donstruction and operation of a noble photobioreactor system. Biotechnol. Bioeng. 38: 1182-1189. https://doi.org/10.1002/bit.260381010
  10. Pulz, O., N. Gerbsch, and R. Buchholz (1995) Light energy supply in plate and light diffusing optical fiber bioreactors. J. Appl. Phycol. 7: 145-149. https://doi.org/10.1007/BF00693061
  11. Sanchez, S., M. E. Martinez, and F. Espinola (2000) Biomass production and biochemical variability of the marine microalga Isochrysis galbana in relation to culture medium. J. Biochem. Eng. 6: 13-18. https://doi.org/10.1016/S1369-703X(00)00071-1
  12. Bouaran, G., L. L. Dean, E. Lukomska, R. Kaas, and R. Baron (2003) Transient initial phase in continuous culture of Isochrysis galbana affinis Tahiti. Aquat. Living Resours. 16: 389-394. https://doi.org/10.1016/S0990-7440(03)00053-6
  13. Patil, V., R. Kallqvist, E. Olsen, G. Vogt, and H. Gislerod (2007) Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquacult. Int. 15: 1-9. https://doi.org/10.1007/s10499-006-9060-3
  14. Burgess, J. G., K. Iwamoto, Y. Miura, H. Takano, and T. Matunaga (1993) An optical fiber photobioreactor for enhanced production of the marine unicellular alga Isochrysis aff. Galbana T-Iso (UTEX LB2307) rich in docosahexaenoic acid. Appl. Microbiol. Biotechnol. 39: 456-459. https://doi.org/10.1007/BF00205032
  15. Tredici, M. R., P. Carlozzi, G. C. Zittelli, R. Materassi (1991) A vertical alveolar panel (VAP) for outdoor mass cultivation of microalgae and cyanobacteria. Bioresour. Technol. 38: 153-160. https://doi.org/10.1016/0960-8524(91)90147-C
  16. Ojala, A. (1993) Effects of temperature and irradiance on the growth of two freshwater Photosynthetic cryptophytes. J. Phycol. 29: 278-284. https://doi.org/10.1111/j.0022-3646.1993.00278.x
  17. Han, B. P. (2002) A mechanistic model of photo-inhibition induced by photodamage to photosystem. J. Theor. Biol. 214: 519-527. https://doi.org/10.1006/jtbi.2001.2468
  18. Mata, T. M., A. A. Martins, and N. S. Caetano (2010) Microalgae for biodiesel production and other applications: A review. Renew. Sust. Energ. Rev. 14: 217-232. https://doi.org/10.1016/j.rser.2009.07.020
  19. Oh, S. Y., J. U. Jo, S. H. Gang, S. M. Lee, J. K. Yang, J. S. Lee, and D. H. Park (2009) Study on thermal and optical properties of LED street lighting module. Summer Conference of Kieeme, 10: 273-274.
  20. Chen, C. Y., G. D. Saratale, C. M. Lee, P. C. Chen, and J. S. Chang (2008) Phototrophic hydrogen production in photo-bioreactors coupled with solar-energy-excited optical fibers. Int. J. Hydrogen Energ. 33: 6878-6885. https://doi.org/10.1016/j.ijhydene.2008.09.009
  21. Wang, C. Y., C. C. Fu, and Y. C. Liu (2007) Effects of using lightemitting diodes on the cultivation of Spirulina platensis. Biochem. Eng. J. 37: 21-25 https://doi.org/10.1016/j.bej.2007.03.004
  22. Katsuda, T., A. Lababpour, K. Shimahara, and S. Katoh (2004) Astaxanthin production by Haematococcus pluvialis under illumination with LEDs. Enzyme Microb. Technol. 35: 81-86. https://doi.org/10.1016/j.enzmictec.2004.03.016
  23. Lee, C. G. and B. O. Palsson (1994) High-density algal photo-bioreactors using light-emitting diodes. Biotechnol. Bioengr. 44: 1161- 1167. https://doi.org/10.1002/bit.260441002
  24. Yun, H. Y. (2006) Growth of culture environment on food organism. M. D. Thesis. University of Mokpo, Chonnam, Korea.
  25. Haff, F. H. and T. W. Snell (2008) Plankton Culture Manual. pp.186. Florida Aquafarms, Inc., Dade City, Florida, USA.
  26. Ichimi, K., Meksumpun, S. and Montani, S (2003) Effects of light intensity on the cyst germination of Chattonella sp. (Raphidophyceae). Plankton Biol. Ecol. 50: 22-24.
  27. Sukenik, A., J. Bennett, A. Mortain-Bertrand, and P. G. Falkowski (1990) Adaption of the photosynthetic apparatus to irradiance in Dunaliella tertiolecta. Plant Physiol. 92: 891-898. https://doi.org/10.1104/pp.92.4.891
  28. Sobczuk, T. M., F. G. Camacho, E. M. Grima, and Y. Chisti (2006) Effects of agitation on the microalgae Phaeodactylum tricornutum and Porphyridium crentum. Bioprocess Biosyst. Eng. 28: 243-250. https://doi.org/10.1007/s00449-005-0030-3
  29. Zhu, Y. H., and J. G. Jiang (2008) Continuous cultivation of Dunaliella salina in photobioreactor for the production of $\beta$-carotene. Eur. Food Res. Technol. 227: 953-959. https://doi.org/10.1007/s00217-007-0789-3