DOI QR코드

DOI QR Code

Effects of Glutamine Deprivation and Serum Starvation on the Growth of Human Umbilical Vein Endothelial Cells

재대정맥 내피세포의 증식에 미치는 글루타민 및 혈청 결핍의 영향

  • Jeong, Jin-Woo (Center for Core Research Facilities, Daegu Gyeongbuk Institute of Science & Technology) ;
  • Lee, Hye Hyeon (Department of Biotechnology, College of Natural Resources and Life Science, Dong-A University) ;
  • Park, Cheol (Department of Molecular Biology, College of Natural Sciences, Dongeui University) ;
  • Kim, Wun-Jae (Department of Urology, College of Medicine, Chungbuk National University) ;
  • Choi, Yung Hyun (Department of Biochemistry, Dongeui University College of Oriental Medicine)
  • 정진우 (대구경북과학기술원 중앙기기센터) ;
  • 이혜현 (동아대학교 생명자원과학대학 생명공학과, 동의대학교) ;
  • 박철 (자연과학대학 분자생물학과) ;
  • 김원재 (충북대학교 의과대학 비뇨기과교실) ;
  • 최영현 (한의과대학 생화학교실)
  • Received : 2013.05.01
  • Accepted : 2013.07.08
  • Published : 2013.07.30

Abstract

Glutamine and serum are essential for cell survival and proliferation in vitro, yet the signaling pathways that sense glutamine and serum levels in endothelial cells remain uninvestigated. In this study, we examined the effects of glutamine deprivation and serum starvation on the fate of endothelial cells using a human umbilical vein endothelial cell (HUVEC) model. Our data indicated that glutamine deprivation and serum starvation trigger a progressive reduction in cell viability through apoptosis induction in HUVECs as determined by DAPI staining and flow cytometry analysis. Although the apoptotic effects were more predominant in the glutamine deprivation condition, both apoptotic actions were associated with an increase in the Bax/Bcl-2 (or Bcl-xL) ratio, down-regulation of the inhibitor of apoptosis protein (IAP) family proteins, activation of caspase activities, and concomitant degradation of poly (ADP-ribose) polymerases. Moreover, down-regulation of the expression of Bid or up-regulation of truncated Bid (tBid) were observed in cells grown under the same conditions, indicating that glutamine deprivation and serum starvation induce the apoptosis of HUVECs through a signaling cascade involving death-receptor-mediated extrinsic pathways, as well as mitochondria-mediated intrinsic caspase pathways. However, apoptosis was not induced in cells grown in glutamine- and serum-free media when compared with cells exposed to glutamine deprivation or serum starvation alone. Taken together, our data indicate that glutamine deprivation and serum starvation suppress cell viability without apoptosis induction in HUVECs.

글루타민과 혈청은 세포의 생존과 증식에 기본적으로 요구되지만, 그들의 양적 변화에 따른 내피세포 반응에 관한 신호전달 관련 연구는 거의 이루어지지 않았다. 본 연구에서는 인체 재대정맥 내피세포(human umbilical vein endothelial cells, HUVECs)의 증식에 미치는 글루타민과 혈청의 결핍에 관한 영향을 조사하였다. 본 연구의 결과에 의하면 글루타민 및 혈청이 결핍된 조건에서 배양된 HUVECs의 증식 억제는 apoptosis 유발과 연관성이 있었음을 DAPI staining에 의한 핵의 형태 변화와 유세포 분석을 통하여 확인하였다. 비록 혈청이 결핍된 조건보다 글루타민 결핍에 의한 apoptosis 유발 정도가 더 높게 나타났으나, 두 현상에 의한 apoptosis의 유발은 anti-apoptotic Bcl-2 및 Bcl-xL의 발현 저하와 pro-apoptotic Bax의 발현 증가, IAP family 단백질의 발현 감소, caspase의 활성 증가에 따른 PARP 단백질의 단편화와 연관성이 있었다. 또한 이러한 조건에서 HUVECs의 Bid 발현의 감소 또는 tBid 발현의 증가 현상이 관찰되어, 글루타민 또는 혈청 결핍에 의한 HUVECs의 apoptosis 유발은 세포막 수용체 및 미토콘드리아 활성 경로를 동시에 통하여 이루어지고 있음을 알 수 있었다. 그러나 글루타민과 혈청이 동시에 결핍된 조건에서 배양된 HUVECs의 증식 억제 현상은 각각의 조건에 비하여 증가되었으나 apoptosis는 유발되지 않았다.

Keywords

References

  1. Billen, L. P., Shamas-Din, A. and Andrews, D. W. 2008. Bid: a Bax-like BH3 protein. Oncogene 27, S93-104 https://doi.org/10.1038/onc.2009.47
  2. Choy, J. C., Granville, D. J., Hunt, D. W. and McManus, B. M. 2001. Endothelial cell apoptosis: biochemical characteristics and potential implications for atherosclerosis. J Mol Cell Cardiol 33, 1673-1690. https://doi.org/10.1006/jmcc.2001.1419
  3. Date, T., Taniguchi, I., Inada, K., Matsuo, S., Miyanaga, S., Yamane, T., Abe, Y., Sugimoto, K. and Mochizuki, S. 2005. Nicorandil inhibits serum starvation-induced apoptosis in vascular endothelial cells. J Cardiovasc Pharmacol 46, 721-726. https://doi.org/10.1097/01.fjc.0000184466.37951.76
  4. Desai, M. Y. and Schoenhagen, P. 2009. Emergence of targeted molecular imaging in atherosclerotic cardiovascular disease. Expert Rev Cardiovasc Ther 7, 197-203. https://doi.org/10.1586/14779072.7.2.197
  5. Drogat, B., Bouchecareilh, M., North, S., Petibois, C., Deleris, G., Chevet, E., Bikfalvi, A. and Moenner, M. 2007. Acute L-glutamine deprivation compromises VEGF-$\alpha$ upregulation in A549/8 human carcinoma cells. J Cell Physiol 212, 463-472. https://doi.org/10.1002/jcp.21044
  6. Dubrez-Daloz, L., Dupoux, A. and Cartier, J. 2008. IAPs:more than just inhibitors of apoptosis proteins. Cell Cycle 7, 1036-1046. https://doi.org/10.4161/cc.7.8.5783
  7. Estaquier, J., Vallette, F., Vayssiere, J. L. and Mignotte, B. 2012. The mitochondrial pathways of apoptosis. Adv Exp Med Biol 942, 157-183. https://doi.org/10.1007/978-94-007-2869-1_7
  8. Fossati, S., Ghiso, J. and Rostagno, A. 2012. Insights into caspase-mediated apoptotic pathways induced by amyloid-$\beta$ in cerebral microvascular endothelial cells. Neurodegener Dis 10, 324-328. https://doi.org/10.1159/000332821
  9. Gerber, H. P., McMurtrey, A., Kowalski, J., Yan, M., Keyt, B. A., Dixit, V. and Ferrara, N. 1998. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 273, 30336-30343. https://doi.org/10.1074/jbc.273.46.30336
  10. Gibbons, G. H. and Dzau, V. J. 1994. The emerging concept of vascular remodeling. N Engl J Med 330, 1431-1438. https://doi.org/10.1056/NEJM199405193302008
  11. Haimovitz-Friedman, A., Cordon-Cardo, C., Bayoumy, S., Garzotto, M., McLoughlin, M., Gallily, R., Edwards, C. K. 3rd, Schuchman, E. H., Fuks, Z. and Kolesnick, R. 1997. Lipopolysaccharide induces disseminated endothelial apoptosis requiring ceramide generation. J Exp Med 186, 1831-1841. https://doi.org/10.1084/jem.186.11.1831
  12. Harfouche, R., Hasséssian, H. M., Guo, Y., Faivre, V., Srikant, C. B., Yancopoulos, G. D. and Hussain, S. N. 2002. Mechanisms which mediate the antiapoptotic effects of angiopoietin-1 on endothelial cells. Microvasc Res 64, 135-147. https://doi.org/10.1006/mvre.2002.2421
  13. Haunstetter, A. and Izumo, S. 1998. Apoptosis: basic mechanisms and implications for cardiovascular disease. Circ Res 82, 1111-1129. https://doi.org/10.1161/01.RES.82.11.1111
  14. Hogg, N., Browning, J., Howard, T., Winterford, C., Fitzpatrick, D. and Gobé, G. 1997. Apoptosis in vascular endothelial cells caused by serum deprivation, oxidative stress and transforming growth factor-b. Endothelium 7, 35-49.
  15. Johnson, T. M., Epstein, S. E. and Finkel, T. 1996. Apoptosis in vascular disease: opportunities for genetic therapeutic intervention. Semin Interv Cardiol 1, 195-202.
  16. Karsan, A., Yee, E., Poirier, G. G., Zhou, P., Craig, R. and Harlan, J. M. 1997. Fibroblast growth factor-2 inhibits endothelial cell apoptosis by Bcl-2-dependent and independent mechanisms. Am J Pathol 151, 1775-1784.
  17. Le Gouill, S., Podar, K., Amiot, M., Hideshima, T., Chauhan, D., Ishitsuka, K., Kumar, S., Raje, N., Richardson, P. G., Harousseau, J. L. and Anderson, K. C. 2004. VEGF induces Mcl-1 up-regulation and protects multiple myeloma cells against apoptosis. Blood 104, 2886-2892. https://doi.org/10.1182/blood-2004-05-1760
  18. Li, A. E., Ito, H., Rovira, I. I., Kim, K. S., Takeda, K., Yu, Z. Y., Ferrans, V. J. and Finkel, T. 1999. A role for reactive oxygen species in endothelial cell anoikis. Circ Res 85, 304-310. https://doi.org/10.1161/01.RES.85.4.304
  19. Liao, H., Xu, J. and Huang, J. 2010. FasL/Fas pathway is involved in dengue virus induced apoptosis of the vascular endothelial cells. J Med Virol 82, 1392-1399. https://doi.org/10.1002/jmv.21815
  20. Mallat, Z. and Tedgui, A. 2000. Apoptosis in the vasculature: mechanisms and functional importance. Br J Pharmacol 130, 947-962. https://doi.org/10.1038/sj.bjp.0703407
  21. McLaughlin, R., Kelly, C. J., Kay, E. and Bouchier-Hayes, D. 2001. The role of apoptotic cell death in cardiovascular disease. Ir J Med Sci 170, 132-140. https://doi.org/10.1007/BF03168827
  22. Mungunsukh, O., Griffin, A. J., Lee, Y. H. and Day, R. M. 2010. Bleomycin induces the extrinsic apoptotic pathway in pulmonary endothelial cells. Am J Physiol Lung Cell Mol Physiol 298, L696-703. https://doi.org/10.1152/ajplung.00322.2009
  23. Napoli, C. 2003. Oxidation of LDL, atherogenesis, and apoptosis. Ann N Y Acad Sci 1010, 698-709. https://doi.org/10.1196/annals.1299.127
  24. Parolari, A., Sala, R., Antona, C., Bussolati, O., Alamanni, F., Mezzadri, P., Dall'Asta, V., Gazzola, G. C. and Biglioli, P. 1997. Hypertonicity induces injury to cultured human endothelium: attenuation by glutamine. Ann Thorac Surg 64, 1770-1775. https://doi.org/10.1016/S0003-4975(97)00998-3
  25. Relou, I. A., Damen, C. A., van der Schaft, D. W., Groenewegen, G. and Griffioen, A. W. 1998. Effect of culture conditions on endothelial cell growth and responsiveness. Tissue Cell 30, 525-530. https://doi.org/10.1016/S0040-8166(98)80032-3
  26. Robaye, B., Mosselmans, R., Fiers, W., Dumont, J. E. and Galand, P. 1991. Tumor necrosis factor induces apoptosis (programmed cell death) in normal endothelial cells in vitro. Am J Pathol 138, 447-453.
  27. Ruegg, C., Yilmaz, A., Bieler, G., Bamat, J., Chaubert, P. and Lejeune, F. J. 1998. Evidence for the involvement of endothelial cell integrin alphaVbeta3 in the disruption of the tumor vasculature induced by TNF and $IFN{\gamma}$. Nat Med 4, 408-414. https://doi.org/10.1038/nm0498-408
  28. Shichiri, M., Kato, H., Marumo, F. and Hirata, Y. 1997. Endothelin-1 as an autocrine/paracrine apoptosis survival factor for endothelial cells. Hypertension 30, 1198-1203. https://doi.org/10.1161/01.HYP.30.5.1198
  29. Suhara, T., Fukuo, K., Sugimoto, T., Morimoto, S., Nakahashi, T., Hata, S., Shimizu, M. and Ogihara, T. 1998. Hydrogen peroxide induces up-regulation of Fas in human endothelial cells. J Immunol 160, 4042-4047.
  30. Tewari, M., Quan, L. T., O'Rourke, K., Desnoyers, S., Zeng, Z., Beidler, D. R., Poirier, G. G., Salvesen, G. S. and Dixit, V. M. 1995. Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81, 801-809. https://doi.org/10.1016/0092-8674(95)90541-3
  31. Tsukada, T., Eguchi, K., Migita, K., Kawabe, Y., Kawakami, A., Matsuoka, N., Takashima, H., Mizokami, A. and Nagataki, S. 1995. Transforming growth factor $\beta$1 induces apoptotic cell death in cultured human umbilical vein endothelial cells with down-regulated expression of bcl-2. Biochem Biophys Res Commun 210, 1076-1082. https://doi.org/10.1006/bbrc.1995.1766
  32. Wang, X., Wang, Y., Lee, S. J., Kim, H. P., Choi, A. M. and Ryter, S. W. 2011. Carbon monoxide inhibits Fas activating antibody-induced apoptosis in endothelial cells. Med Gas Res 1, 8. https://doi.org/10.1186/2045-9912-1-8