DOI QR코드

DOI QR Code

Phylogenetic Relationships of the Genus Hemerocallis in Korea using rps16-trnK Sequences in Chloroplast DNA

엽록체 rps16-trnK 서열에 의한 한국 내 원추리속 식물종의 계통 관계

  • 허만규 (동의대학교 자연과학대학 분자생물학과) ;
  • 권오성 (동의대학교 자연과학대학 분자생물학과) ;
  • 이병룡 (서원대학교 생물교육과)
  • Received : 2013.01.24
  • Accepted : 2013.06.28
  • Published : 2013.07.30

Abstract

The genus Hemerocallis (family Xanthorthoeaceae) is a herbaceous species, some of which are very important in herbal medicines. We evaluated the rps16-trnK region of the chloroplast DNA of a representative sample of eight taxa in Korea to estimate phylogenetic relationships within the taxa of this genus. Due to differences in the number of inserted nucleotides, the aligned data for Hemerocallis ranged from 729 (H. aurantiaca) to 742 nucleotides (H. fulva var. kwanso), with a mean of 736. Although several small indels and 20 inserts were present, sequence variation within the Hemerocallis genus was mostly due to nucleotide substitutions. All rps16-trnK trees generated in Korea exhibited a well-solved topology, with high bootstrap support, irrespective of the methods (parsimony) and the setting used. The node of H. minor and H. littorea was strongly supported, with a high bootstrap value in three trees, and these two taxa were sistered with H. thunbergii. The number of chromosomes was not congruent with that found in a previous study with RAPD, but the number was in agreement with the results of this study.

원추리속 식물은 초본류이며 이 속의 일부 종은 약용으로 중요하다. 이 속의 8개 분류군에 대해 엽록체의 rps16-trnK 부위로 계통관계를 평가하였다. 배당된 서열은 원추리(H. aurantiaca)에서 729 핵산 수로 가장 적었으며 왕원추리(H. fulva var. kwanso)에서 742 핵산 수로 가장 많았다. 그 차이는 염기 삽입에 기인하였다. 비록 일부 인델(indel)과 20개 염기의 삽입이 발견되었지만 서열 내 변이는 염기 치환이 많았다. rps16 - trnK에 의한 한국내 원추리속 분류군들은 높은 지지도로 잘 분리되었다. 애기원추리(H. minor)와 홍도원추리(H. littorea)는 높은 지지도로 같은 분지군을 형성하였으며 이 분지군은 노랑원원추리와 자매군을 형성하였다. 염색체의 수는 기존 보고된 RAPD의 결과와는 일치하지 않으나 본 연구와는 일치하였다.

Keywords

References

  1. Andersson, L. and Rova, J. H. 1999. The rps16 intron and the phylogeny of the Rubioideae (Rubiaceae). Plant Syst Evol 214, 161-186. https://doi.org/10.1007/BF00985737
  2. Chung, M. 2000. Spatial structure of three populations of Hemerocalis hakuuensis. Bot Bull Acad Sci 41, 231-236.
  3. Chung, M. G. and Kang, S. S. 1994. Morphometric analysis of the genus Hemerocallis L. (Lilisceae) in Korea. J Plant Res 107, 165-175. https://doi.org/10.1007/BF02346013
  4. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783-791. https://doi.org/10.2307/2408678
  5. Golenberg, E. M., Clegg, M. T., Durbin, M. L., Doebley, J. and Ma, D. P. 1993. Evolution of a noncoding region of the chloroplast genome. Mol Phylogenet Evol 2, 52-64. https://doi.org/10.1006/mpev.1993.1006
  6. Han, H. M. 1996. Detection of genetic variability in daylily genus (Hemerocallis) using randomly amplified polymorphic DNAs. Donguk University, MS.
  7. Kang, S. S. and Chung, M. G. 1994. Hemerocallis hakuunensis (Liliaceae) in Korea. Sida 16, 23-31.
  8. Kumar, S. and Gadagkar, S. R. 2001. Disparity Index: A simple statistic to measure and test the homogeneity of substitution patterns between molecular sequences. Genetics 158, 1321-1327.
  9. Kwon, K. S. 1980. Morphological and cytological studies on the genus Hemerocallis in Korea. Ewha Womans University, MS., Seoul.
  10. Lee, T. B. 2003. Coloured Flora of Korea. Hyangmoon Publishing Co., Seoul, Korea.
  11. Matsuoka, N. and Hotta, M. 1966. Classification of Hemerocallis in Japan and its vicinity. Acta Phytotax Geobot 22, 22-25.
  12. Noguchi, J. and Hong, D. 2004. Multiple origins of the Japanese nocturnal Hemerocalis citrina. Int J Plant Sci 16, 219-230.
  13. Noguchi, J., Hong, D. and Grant, W. F. 2004. The historical evolutionary development of Hemerocallis middendorfii (Hemerocallidaceae) revealed by non-coding regions in chloroplast DNA. Plant Syst Evol 247, 1-22.
  14. Oxelman, B., Liden, M. and Berglund, D. 1997. Chloroplast rps16 intron phylogeny of the tribe Sileneae (Caryophyllaceae). Plant Syst Evol 206, 393-410. https://doi.org/10.1007/BF00987959
  15. Saitou, N. and Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406-425.
  16. Shaw, J., Lickey, E. B., Beck, J. T., Farmer, S. B., Liu, W., Miller, J., Siripun, K. C., Winder, C. T., Schilling, E. E. and Small, R. L. 2005. The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot 92, 142-166. https://doi.org/10.3732/ajb.92.1.142
  17. Swofford, D. L. 2003. PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 4. Sunderland, Sinauer Associates, Inc. MA.
  18. Stout, A. B. 1933. The flowering habits of daylilies. New York Bot Gard 34, 25-32.
  19. Stout, A. B. 1935. The lemon daylily (Hemerocallis flava L.): its origin and status. New York Bot Gard 36, 61-68.
  20. Stout, A. B. 1941. The inflorescence in Hemerocallis - 1. Bull Torr Bot Club 73, 134-154.
  21. Tajima, F. 1989. Statistical methods to test for nucleotide mutation hypothesis by DNA polymorphism. Genetics 123, 585-595.
  22. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28, 2731-2739. https://doi.org/10.1093/molbev/msr121
  23. Zomlefer, W. B. 1998. The genera of Hemerocallidaceae in the south-eastern United States. Harv Pap Bot 3, 113-145.
  24. Zwickl, D. J. 2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph. D. dissertation, The University of Texas at Austin.