DOI QR코드

DOI QR Code

Advanced Nanoscale Characterization of Cement Based Materials Using X-Ray Synchrotron Radiation: A Review

  • Chae, Sejung R. (Department of Civil and Environmental Engineering, University of California at Berkeley) ;
  • Moon, Juhyuk (Department of Civil and Environmental Engineering, University of California at Berkeley) ;
  • Yoon, Seyoon (Department of Civil and Environmental Engineering, University of California at Berkeley) ;
  • Bae, Sungchul (Department of Civil and Environmental Engineering, University of California at Berkeley) ;
  • Levitz, Pierre (Laboratory PECSA, CNRS, Universite Pierre et Marie Curie) ;
  • Winarski, Robert (Center for Nanaoscale Materials, Argonne National Laboratory) ;
  • Monteiro, Paulo J.M. (Department of Civil and Environmental Engineering, University of California at Berkeley)
  • Received : 2013.11.30
  • Accepted : 2013.03.18
  • Published : 2013.06.30

Abstract

We report various synchrotron radiation laboratory based techniques used to characterize cement based materials in nanometer scale. High resolution X-ray transmission imaging combined with a rotational axis allows for rendering of samples in three dimensions revealing volumetric details. Scanning transmission X-ray microscope combines high spatial resolution imaging with high spectral resolution of the incident beam to reveal X-ray absorption near edge structure variations in the material nanostructure. Microdiffraction scans the surface of a sample to map its high order reflection or crystallographic variations with a micron-sized incident beam. High pressure X-ray diffraction measures compressibility of pure phase materials. Unique results of studies using the above tools are discussed-a study of pores, connectivity, and morphology of a 2,000 year old concrete using nanotomography; detection of localized and varying silicate chain depolymerization in Al-substituted tobermorite, and quantification of monosulfate distribution in tricalcium aluminate hydration using scanning transmission X-ray microscopy; detection and mapping of hydration products in high volume fly ash paste using microdiffraction; and determination of mechanical properties of various AFm phases using high pressure X-ray diffraction.

Keywords

References

  1. Attwood, D. (2000). Soft X-rays and extreme ultraviolet radiation: Principles and applications. USA: Cambridge University Press.
  2. Bentz, D. P. (1997). Three-dimensional computer simulation of Portland cement hydration and microstructure development. Journal of the American Ceramic Society, 80, 3-21. https://doi.org/10.1111/j.1151-2916.1997.tb02785.x
  3. Bilderback, D. H., Elleaume, P., & Weckert, E. (2005). Review of third and next generation synchrotron light source. Journal of Physics B, 38, 773-797. https://doi.org/10.1088/0953-4075/38/9/022
  4. Birch, F. (1978). Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 oK. Journal of Geophysical Research, 83, 1257-1268. https://doi.org/10.1029/JB083iB03p01257
  5. Brisard, S., Chae, R. S., Bihannic, I., Michot, L., Guttmann, P., Thieme, J., et al. (2012). Morphological quantification of hierarchical geomaterials by X-ray nano-CT bridges the gap from nano to micro length scales. American Mineralogist, 97, 480-483. https://doi.org/10.2138/am.2012.3985
  6. Brown, G. E., Sutton, S. R., & Calas, G. (2006). User facilities around the world. Elements, 2, 9-14. https://doi.org/10.2113/gselements.2.1.9
  7. Cedola, A., Lagomarsino, S., Komlev, V., Rustichelli, F., Mastrogiacomo, M., Cancedda, R., et al. (2004). High spatial resolution X-ray micro diffraction applied to biomaterial studies and archeometry. Spectrochimica Acta Part B, 59, 1557-1564. https://doi.org/10.1016/j.sab.2004.05.031
  8. Chao, J., Suominen Fuller, M. L., Sherry, N., Qin, J., McIntyre, N. S., Ulaganathan, J., et al. (2012). Plastic and elastic strains in short and long cracks in alloy 600 studied by polychromatic X-ray micro diffraction and electron back-scatter diffraction. Acta Materialia, 60, 5508-5515. https://doi.org/10.1016/j.actamat.2012.06.060
  9. Clark, S. M., Colas, B., Kunz, M., Speziale, S., & Monteiro, P. J. M. (2008). Effect of pressure on the crystal structure of ettringite. Cement and Concrete Research, 38, 19-26. https://doi.org/10.1016/j.cemconres.2007.08.029
  10. Cong, X., & Kirkpatrick, R. J. (1996). 29Si MAS NMR study of the structure of calcium silicate hydrate. Advanced Cement Based Materials, 3, 144-156. https://doi.org/10.1016/S1065-7355(96)90046-2
  11. Constantinides, G., & Ulm, F.-J. (2004). The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling. Cement and Concrete Research, 34, 67-80. https://doi.org/10.1016/S0008-8846(03)00230-8
  12. Cullity, B. D. (1978). Elements of X-ray diffraction. Reading, MA: Addison-Wesley.
  13. Duxson, P., Provis, J. L., Lukey, G. C., & van Deventer, J. S. J. (2007). The role of inorganic polymer technology in the development of 'green concrete'. Cement and Concrete Research, 37, 1590-1597. https://doi.org/10.1016/j.cemconres.2007.08.018
  14. Eggert, J. H., Weck, G., Loubeyre, P., & Mezouar, M. (2002). Quantitative structure factor and density measurements of high-pressure fluids in diamond anvil cells by X-ray diffraction: Argon and water. Physical Review B, 65, 174105. https://doi.org/10.1103/PhysRevB.65.174105
  15. Gilbert, P. U. P. A., Metzler, R. A., Zhou, D., Scholl, A., Doran, A., Young, A., et al. (2008). Gradual ordering in red abalone nacre. Journal of the American Chemical Society, 130, 17519-17527. https://doi.org/10.1021/ja8065495
  16. Ha, J., Chae, S., Chou, K. W., Tyliszczak, T., & Monteiro, P. J. M. (2011). Effect of polymers on the nanostructure and on the carbonation of calcium silicate hydrates: A scanning transmission X-ray microscopy study. Journal of Materials Science, 27, 1-14.
  17. Hawthorne, F. C. (1988). Spectroscopic methods in mineralogy and geology. Washington, D.C.: Mineralogical Society of America.
  18. Hong, X., Shen, G., Prakapenka, V. B., Rivers, M. L., & Sutton, S. R. (2007). Density measurements of noncrystalline materials at high pressure with diamond anvil cell. Review of Scientific Instruments, 78, 103905-103906. https://doi.org/10.1063/1.2795662
  19. Howells, M., Kirz, J., Sayre, D., & Schmahl, G. (1985). Soft-Xray microscopes. Physics Today, 38, 22-32.
  20. Jackson, M. D., Vola, G., Vsiansky, D., Oleson, J. P., Scheetz, B. E., Brandon, C., & Hohlfelder, R. L. (2012). Cement microstructures and durability in ancient roman seawater concretes. Historic Mortars, 7, 49-76.
  21. John, D. B., Wenge, Y., Nobumichi, T., Jin-Seok, C., Jonathan, Z. T., Bennett, C. L., et al. (2003). X-ray microdiffraction study of growth modes and crystallographic tilts in oxide films on metal substrates. New York, NY: Nature Publishing Group.
  22. Jones, M. R., Macphee, D. E., Chudek, J. A., Hunter, G., Lannegrand, R., Talero, R., et al. (2003). Studies using 27Al MAS NMR of AFm and AFt phases and the formation of Friedel's salt. Cement and Concrete Research, 33,177-182. https://doi.org/10.1016/S0008-8846(02)00901-8
  23. Juenger, M. C. G., Winnefeld, F., Provis, J. L., & Ideker, J. H. (2011). Advances in alternative cementitious binders. Cement and Concrete Research, 41, 1232-1243. https://doi.org/10.1016/j.cemconres.2010.11.012
  24. Kilcoyne, D., Ade, H., Attwood, D., Hitchcock, A., McKean, P., Mitchell, G., Monteiro, P., Tyliszczak, T., & Warwick, T. A new scanning transmission X-ray Microscope at the ALS for operation up to 2500 eV, In: AIP Conference Proceedings, 2010, p. 465.
  25. Kilcoyne, A., Tyliszczak, T., Steele, W., Fakra, S., Hitchcock, P., Franck, K., et al. (2003). Interferometer-controlled scanning transmission X-ray microscopes at the advanced light source. Journal of Synchrotron Radiation, 10, 125-136. https://doi.org/10.1107/S0909049502017739
  26. Koningsberger, D. C., & Prins, R. (1987). X-ray absorption: Principles, applications, techniques of EXAFS. Wiley: SEXAFS and XANES.
  27. Kunz, M., MacDowell, A. A., Caldwell, W. A., Cambie, D., Celestre, R. S., Domning, E. E., et al. (2005). A beamline for high-pressure studies at the advanced light source with a superconducting bending magnet as the source. Journal of Synchrotron Radiation, 12, 650-658. https://doi.org/10.1107/S0909049505020959
  28. Kunz, M., Tamura, N., Chen, K., MacDowell, A. A., Celestre, R. S., Church, M. M., et al. (2009). A dedicated superbend X-ray microdiffraction beamline for materials, geo-, and environmental sciences at the advanced light source. Review of Scientific Instruments, 80, 035108-035110. https://doi.org/10.1063/1.3096295
  29. Langford, J. (1975). X-ray diffraction procedures for poly-crystalline and amorphous materials by H. P. Klug and L. E. Alexander. Journal of Applied Crystallography, 8, 573-574.
  30. Liu, Y., Wang, J., Hong, Y., Wang, Z., Zhang, K., Williams, P. A., et al. (2012). Extended depth of focus for transmission X-ray microscope. Optics Letters, 37, 3708-3710. https://doi.org/10.1364/OL.37.003708
  31. Mehta, P., & Monteiro, P. (2006). Concrete-structure, material, and properties. Saddle River, NJ: Prantice Hall Inc.
  32. Monteiro, P. J. M., Kirchheim, A. P., Chae, S., Fischer, P., MacDowell, A. A., Schaible, E., et al. (2009). Characterizing the nano and micro structure of concrete to improve its durability. Cement & Concrete Composites, 31, 577-584. https://doi.org/10.1016/j.cemconcomp.2008.12.007
  33. Moon, J., Oh, J. E., Balonis, M., Glasser, F. P., Clark, S. M., & Monteiro, P. J. M. (2011). Pressure induced reactions amongst calcium aluminate hydrate phases. Cement and Concrete Research, 41, 571-578. https://doi.org/10.1016/j.cemconres.2011.02.004
  34. Moon, J., Oh, J. E., Balonis, M., Glasser, F. P., Clark, S. M., & Monteiro, P. J. M. (2012a). High pressure study of low compressibility tetracalcium aluminum carbonate hydrates 3CaO.$Al_2O_3$.$CaCO_3$.$11H_2O$. Cement and Concrete Research, 42, 105-110. https://doi.org/10.1016/j.cemconres.2011.08.004
  35. Moon, J., Yoon, S., Wentzcovitch, R. M., Clark, S. M., & Monteiro, P. J. M. (2012b). Elastic properties of tricalcium aluminate from high-pressure experiments and first-principles calculations. Journal of the American Ceramic Society, 95, 2972-2978. https://doi.org/10.1111/j.1551-2916.2012.05301.x
  36. Nyilas, R. D., Kobas, M., & Spolenak, R. (2009). Synchrotron X-ray microdiffraction reveals rotational plastic deformation mechanisms in polycrystalline thin films. Acta Materialia, 57, 3738-3753. https://doi.org/10.1016/j.actamat.2009.04.024
  37. Oh, J. E., Clark, S. M., & Monteiro, P. J. M. (2011). Does the Al substitution in C-S-H(I) change its mechanical property? Cement and Concrete Research, 41, 102-106. https://doi.org/10.1016/j.cemconres.2010.09.010
  38. Oh, J. E., Clark, S. M., Wenk, H.-R., & Monteiro, P. J. M. (2012). Experimental determination of bulk modulus of 14 $\AA$ tobermorite using high pressure synchrotron X-ray diffraction. Cement and Concrete Research, 42, 397-403. https://doi.org/10.1016/j.cemconres.2011.11.004
  39. Ohuchi, T., Kawazoe, T., Nishihara, Y., Nishiyama, N., & Irifune, T. (2011). High pressure and temperature fabric transitions in olivine and variations in upper mantle seismic anisotropy. Earth and Planetary Science Letters, 304, 55-63. https://doi.org/10.1016/j.epsl.2011.01.015
  40. Rehbein, S., Heim, S., Guttmann, P., Werner, S., & Schneider, G. (2009). Ultrahigh-resolution soft-X-ray microscopy with zone plates in high orders of diffraction. Physical Review Letters, 103, 110801. https://doi.org/10.1103/PhysRevLett.103.110801
  41. Robert, M. V. H., Winarski, P., Rose, V., Fuesz, P., Carbaugh, D., Benson, C., et al. (2012). A hard x-ray nanoprobe beamline for nanoscale microscopy. Journal of Synchrotron Radiation, 19, 1056-1060. https://doi.org/10.1107/S0909049512036783
  42. Sato, T., & Funamori, N. (2008). High-pressure in situ density measurement of low-Z noncrystalline materials with a diamond-anvil cell by an X-ray absorption method. Review of Scientific Instruments, 79, 073906-073911. https://doi.org/10.1063/1.2953093
  43. Schlachter, A. S. (1994). New Directions in research with third-generation soft X-ray synchrotron radiation sources: Proceedings of the NATO advanced study institute on new directions in research with third-generation soft X-ray synchrotron radiation sources. Dordrecht, Netherlands: Kluwer academic publishers.
  44. Schneider, G., Guttmann, P., Heim, S., Rehbein, S., Mueller, F., Nagashima, K., et al. (2010). Three-dimensional cellular ultrastructure resolved by X-ray microscopy. Nature Methods, 7, 985-987. https://doi.org/10.1038/nmeth.1533
  45. Schneider, G., Guttmann, P., Rehbein, S., Werner, S., & Follath, R. (2012). Cryo X-ray microscope with flat sample geometry for correlative fluorescence and nanoscale tomographic imaging. Journal of Structural Biology, 177, 212-223. https://doi.org/10.1016/j.jsb.2011.12.023
  46. Scrivener, K., Fullmann, T., Gallucci, E., Walenta, G., & Bermejo, E. (2004). Quantitative study of Portland cement hydration by X-ray diffraction/Rietveld analysis and independent methods. Cement and Concrete Research, 34, 1541-1547. https://doi.org/10.1016/j.cemconres.2004.04.014
  47. Shen, G., Sata, N., Taberlet, N., Newville, M., Rivers, M. L., & Sutton, S. R. (2002). Melting studies of indium: Determination of the structure and density of melts at high pressures and high temperatures. Journal of Physics Condensed Matter, 14, 10533. https://doi.org/10.1088/0953-8984/14/44/328
  48. Speziale, S., Reichmann, H. J., Schilling, F. R., Wenk, H. R., & Monteiro, P. J. M. (2008). Determination of the elastic constants of portlandite by Brillouin spectroscopy. Cement and Concrete Research, 38, 1148-1153. https://doi.org/10.1016/j.cemconres.2008.05.006
  49. Tamura, N., Kunz, M., Chen, K., Celestre, R. S., MacDowell, A. A., & Warwick, T. (2009). A superbend X-ray micro-diffraction beamline at the advanced light source. Materials Science and Engineering A, 524, 28-32. https://doi.org/10.1016/j.msea.2009.03.062
  50. Tamura, N., MacDowell, A. A., Spolenak, R., Valek, B. C., Bravman, J. C., Brown, W. L., et al. (2003). Scanning X-ray microdiffraction with submicrometer white beam for strain/stress and orientation mapping in thin films. Journal of Synchrotron Radiation, 10, 137-143. https://doi.org/10.1107/S0909049502021362
  51. Webb, A. G. (2002). Introduction to Biomedical Imaging. New York, NY: Wiley.
  52. Wenk, H.-R., Monteiro, P. J. M., Kunz, M., Chen, K., Tamura, N., Lutterotti, L., et al. (2009). Preferred orientation of ettringite in concrete fractures. Journal of Applied Crystallography, 42(3), 429-432. https://doi.org/10.1107/S0021889809015349
  53. Wieland, E., Dahn, R., Vespa, M., & Lothenbach, B. (2010). Micro-spectroscopic investigation of Al and S speciation in hardened cement paste. Cement and Concrete Research, 40, 885-891. https://doi.org/10.1016/j.cemconres.2010.02.001
  54. Xiao, X., Liu, H., Wang, L., & De Carlo, F. (2010). Density measurement of samples under high pressure using synchrotron micro tomography and diamond anvil cell techniques. Journal of Synchrotron Radiation, 17, 360-366. https://doi.org/10.1107/S0909049510008502
  55. Yarris, L. (2001). Ernest Orlando Lawrence: The man, his lab, his legacy, in: Science Beat (http://wwwlblgov/ScienceArticles/Archive/lawrence-legacyhtml ), Lawrence Berkeley National Lab, Berkeley, CA. Accessed 1 Nov 2012.

Cited by

  1. Material and Elastic Properties of Al‐Tobermorite in Ancient Roman Seawater Concrete vol.96, pp.8, 2013, https://doi.org/10.1111/jace.12407
  2. A multi-sensing electromechanical impedance method for non-destructive evaluation of metallic structures vol.22, pp.9, 2013, https://doi.org/10.1088/0964-1726/22/9/095011
  3. CaCl2-Accelerated Hydration of Tricalcium Silicate: A STXM Study Combined with29Si MAS NMR vol.2015, pp.None, 2013, https://doi.org/10.1155/2015/215371
  4. Can We See the Nano Structure of Calcium Silicate Hydrates(C-S-H)? vol.53, pp.5, 2013, https://doi.org/10.3151/coj.53.394
  5. Effect of Autoclave Curing on the Microstructure of Blended Cement Mixture Incorporating Ground Dune Sand and Ground Granulated Blast Furnace Slag vol.9, pp.3, 2013, https://doi.org/10.1007/s40069-015-0104-9
  6. Creep Mechanisms of Calcium-Silicate-Hydrate: An Overview of Recent Advances and Challenges vol.9, pp.4, 2015, https://doi.org/10.1007/s40069-015-0114-7
  7. Quantifying fracture geometry with X-ray tomography: Technique of Iterative Local Thresholding (TILT) for 3D image segmentation vol.20, pp.1, 2013, https://doi.org/10.1007/s10596-016-9560-9
  8. Recent studies of cements and concretes by synchrotron radiation crystallographic and cognate methods vol.22, pp.3, 2013, https://doi.org/10.1080/0889311x.2015.1070260
  9. Characterization of Class F Fly Ash Using STXM: Identifying Intraparticle Heterogeneity at Nanometer Scale vol.2016, pp.None, 2013, https://doi.org/10.1155/2016/8072518
  10. Characterization of a sustainable sulfur polymer concrete using activated fillers vol.67, pp.None, 2013, https://doi.org/10.1016/j.cemconcomp.2015.12.002
  11. Progressive damage detection using the reusable electromechanical impedance method for metal structures with a possibility of weight loss identification vol.25, pp.5, 2016, https://doi.org/10.1088/0964-1726/25/5/055039
  12. Nano-Inclusions Applied in Cement-Matrix Composites: A Review vol.9, pp.12, 2013, https://doi.org/10.3390/ma9121015
  13. Micropore Structures in Cenosphere-Containing Cementitious Materials Using Micro-CT vol.2017, pp.None, 2013, https://doi.org/10.1155/2017/3892683
  14. Рентгеновская микроскопия vol.187, pp.2, 2013, https://doi.org/10.3367/ufnr.2016.06.037830
  15. Characterization of the Bonds Developed between Calcium Silicate Hydrate and Polycarboxylate-Based Superplasticizers with Silyl Functionalities vol.33, pp.14, 2013, https://doi.org/10.1021/acs.langmuir.6b04368
  16. Visualization of Electrochemical Reactions in Battery Materials with X-ray Microscopy and Mapping vol.29, pp.8, 2013, https://doi.org/10.1021/acs.chemmater.6b05114
  17. Multiscale characterization of a lithium/sulfur battery by coupling operando X-ray tomography and spatially-resolved diffraction vol.7, pp.None, 2013, https://doi.org/10.1038/s41598-017-03004-4
  18. Contrast enhancement of biological nanoporous materials with zinc oxide infiltration for electron and X-ray nanoscale microscopy vol.7, pp.None, 2013, https://doi.org/10.1038/s41598-017-05690-6
  19. The Hydration of β- and α′H-Dicalcium Silicates: An X-ray Spectromicroscopic Study vol.7, pp.2, 2013, https://doi.org/10.1021/acssuschemeng.8b05060
  20. Current progress on nanotechnology application in recycled aggregate concrete vol.8, pp.2, 2013, https://doi.org/10.1080/21650373.2018.1519644
  21. Evaluation of liver iron content using synchrotron radiation CT in iron-overload mice vol.14, pp.5, 2013, https://doi.org/10.1088/1748-0221/14/05/p05023
  22. Multiscale poromechanics of wet cement paste vol.116, pp.22, 2019, https://doi.org/10.1073/pnas.1901160116
  23. Nanolayered attributes of calcium‐silicate‐hydrate gels vol.103, pp.1, 2013, https://doi.org/10.1111/jace.16750
  24. Microstructural Study of Hydration of C3S in the Presence of Calcium Nitrate Using Scanning Transmission X-Ray Microscopy (STXM) vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/8419130
  25. Determination of Mohr-Coulomb Parameters for Modelling of Concrete vol.10, pp.9, 2013, https://doi.org/10.3390/cryst10090808