DOI QR코드

DOI QR Code

Catalytic NiO Filter Supported on Carbon Fiber for Oxidation of Volatile Organic Compounds

  • Received : 2013.04.02
  • Accepted : 2013.04.20
  • Published : 2013.07.20

Abstract

Carbon-fiber-supported NiO catalytic filters for oxidation of volatile organic compounds were prepared by electroless Ni-P plating and subsequent annealing processes. Surface structure and crystallinity of NiO film on carbon fiber could be modified by post-annealing at different temperatures (500 and $650^{\circ}C$). Catalytic thermal decompositions of toluene over these catalytic filters were investigated. $500^{\circ}C$-annealed sample showed a higher catalytic reactivity toward toluene decomposition than $650^{\circ}C$-annealed one under same conditions, despite of its lower surface area and toluene adsorption capacity. X-ray diffraction and X-ray photoelectron spectroscopy studies suggest that amorphous structures of NiO on $500^{\circ}C$-annealed catalyst caused the higher reactivity for oxidation of toluene than that of $650^{\circ}C$-annealed sample with a higher crystallinity.

Keywords

References

  1. Browning, E. Toxicity and Metabolism of Industrial Solvents; Elsevier Publishing Company: Amsterdam, Netherland, 1965.
  2. Busca, G.; Berardinelli, S.; Resini, C.; Arrighi, L. J. Hazard. Mater. 2008, 160, 265. https://doi.org/10.1016/j.jhazmat.2008.03.045
  3. Mudliar, S.; Giri, B.; Padoley, K.; Satpute, D.; Dixit, R.; Bhatt, P.; Pandey, R.; Juwarkar, A.; Vaidya, A. J. Environ. Manage. 2010, 91, 1039. https://doi.org/10.1016/j.jenvman.2010.01.006
  4. Lewis, A. C.; Carslaw, N.; Marriott, P. J.; Kinghorn, R. M.; Morrison, P.; Lee, A. L.; Bartle, K. D.; Pilling, M. J. Nature 2000, 405, 778. https://doi.org/10.1038/35015540
  5. Tsou, J.; Magnoux, P.; Guisnet, M.; Orfao, J. J. M.; Figueiredo, J. L. Appl. Catal. B: Environ. 2005, 57, 117. https://doi.org/10.1016/j.apcatb.2004.10.013
  6. Walerczyk, W.; Zawadzki, M. Catal. Today 2011, 176, 159. https://doi.org/10.1016/j.cattod.2010.11.099
  7. He, C.; Li, J.; Zhang, X.; Yin, L.; Chen, J.; Gao, S. Chem. Eng. J. 2012, 180, 46. https://doi.org/10.1016/j.cej.2011.10.099
  8. Sun, H.; Chen, S.; Wang, P.; Quan, X. Chem. Eng. J. 2011, 178, 191. https://doi.org/10.1016/j.cej.2011.10.047
  9. Scirè, S.; Minico, S.; Crisafulli, C.; Satriano, C.; Pistone, A. Appl. Catal. B: Environ. 2003, 40 , 43. https://doi.org/10.1016/S0926-3373(02)00127-3
  10. Aguero, F. N.; Barbero, B. P.; Almeida, L. C.; Montes, M.; Cadus, L. E. Chem. Eng. J. 2011, 166, 218. https://doi.org/10.1016/j.cej.2010.10.064
  11. Somekawa, S.; Hagiwara, T.; Fujii, K.; Kojima, M.; Shinoda, T.; Takanabe, K.; Domen, K. Appl. Catal. A: Gen. 2011, 409-410, 209. https://doi.org/10.1016/j.apcata.2011.10.004
  12. Kovanda, F.; Jiratova, K. Catal. Today 2011, 176, 110. https://doi.org/10.1016/j.cattod.2011.02.002
  13. Kim, K.-D.; Nam, J. W.; Seo, H. O.; Kim, Y. D.; Lim, D. C. J. Phys. Chem. C 2011, 115, 22954. https://doi.org/10.1021/jp2065997
  14. Grbic, B.; Radic, N.; Terlecki-Baricevic, A. Appl. Catal. B: Environ. 2004, 50, 161. https://doi.org/10.1016/j.apcatb.2004.01.012
  15. Garcia, T.; Agouram, S.; Sánchez-Royo, J. F.; Murillo, R.; Mastral, A. M.; Aranda, A.; Vázquez, I.; Dejoz, A.; Solsona, B. Appl. Catal. A: Gen. 2010, 386, 16. https://doi.org/10.1016/j.apcata.2010.07.018
  16. de Rivas, B.; Gutierrez-Ortiz, J. I.; Lopez-Fonseca, R.; Gonzalez- Velasco, J. R. Appl. Catal. A: Gen. 2006, 314, 54. https://doi.org/10.1016/j.apcata.2006.08.005
  17. Perez-Alonso, F. J.; Melián-Cabrera, I.; Granados, M. L.; Kapteijn, F.; Fierro, J. L. G. J. Catal. 2006, 239, 340. https://doi.org/10.1016/j.jcat.2006.02.008
  18. Bueno-Lopez, A.; Krishna, K.; Makkee, M.; Moulijn, J. A. Catal. Lett. 2005, 99, 203. https://doi.org/10.1007/s10562-005-2120-x
  19. Lahousse, C.; Bernier, A.; Grange, P.; Delmon, B.; Papaefthimiou, P.; Ioannides, T.; Verykios, X. J. Catal. 1998, 178, 214. https://doi.org/10.1006/jcat.1998.2148
  20. Peng, G.; Merte, L. R.; Knudsen, J.; Vang, R. T.; Lægsgaard, E.; Besenbacher, F.; Mavrikakis, M. J. Phys. Chem. C 2010, 114, 21579. https://doi.org/10.1021/jp108475e
  21. Knudsen, J.; Merte, L. R.; Peng, G.; Vang, R. T.; Resta, A.; Lægsgaard, E.; Andersen, J. N.; Mavrikakis, M.; Besenbacher, F. ACS. Nano 2010, 4, 4380. https://doi.org/10.1021/nn101241c
  22. Lee, H. J.; Seo, H. O.; Kim, D. W.; Kim, K.-D.; Luo, Y.; Lim, D. C.; Ju, H.; Kim, J. W.; Lee, J.; Kim, Y. D. Chem. Commun. 2011, 47, 5605. https://doi.org/10.1039/c1cc10307e
  23. Greiner, M. T.; Helander, M. G.; Wang, Z.-B.; Tang, W.-M.; Lu, Z.-H. J. Phys. Chem. C 2010, 114, 19777. https://doi.org/10.1021/jp108281m
  24. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy; Chastain, J., King, R. C., Jr., Eds.; Physical Eletronics, Inc.: Minnesota, U.S.A., 1995.
  25. Elsener, B.; Atzei, D.; Krolikowski, A.; Albertini, V. R.; Sadun, C.; Caminiti, R.; Rossi, A. Chem. Mater. 2004, 16, 4216. https://doi.org/10.1021/cm030606x
  26. Ochs, D.; Dieckhoff, S.; Cord, B. Surf. Interface. Anal. 2000, 30, 12. https://doi.org/10.1002/1096-9918(200008)30:1<12::AID-SIA770>3.0.CO;2-B
  27. Cecilia, J. A.; Infantes-Molina, A.; Rodriguez-Castellon, E.; Jimenez- Lopez, A. J. Catal. 2009, 263, 4. https://doi.org/10.1016/j.jcat.2009.02.013
  28. Rengifo-Herrera, J. A.; Blanco, M. N.; Pizzio, L. R. Appl. Catal. B: Environ. 2011, 110, 126. https://doi.org/10.1016/j.apcatb.2011.08.034
  29. Zhang, H. J.; Chen, Z. Q.; Wang, S. J. J. Chem. Phys. 2012, 136, 034701. https://doi.org/10.1063/1.3676259
  30. Castro-Hurtado, I.; Herran, J.; Mandayo, G. G.; Castano, E. Thin. Solid Films 2011, 520, 947. https://doi.org/10.1016/j.tsf.2011.04.180
  31. Loboué, H.; Guillot-Deudon, C.; Popa, A. F.; Lafond, A.; Rebours, B.; Pichon, C.; Cseri, T.; Berhault, G.; Geantet, C. Catal. Today 2008, 130, 63. https://doi.org/10.1016/j.cattod.2007.07.005
  32. Seo, H. O.; Nam, J. W.; Kim, K.-D.; Sim, J. K.; Kim, Y. D.; Lim, D. C. J. Mol. Catal. A 2012, 361-362, 45. https://doi.org/10.1016/j.molcata.2012.05.001
  33. Deng, J.-F.; Li, H.; Wang, W. Catal. Today 1999, 51, 113. https://doi.org/10.1016/S0920-5861(99)00013-9

Cited by

  1. BTXs Removal with Transition Metals Coated Beds, Considering the Plausible Reaction Mechanisms vol.8, pp.4, 2013, https://doi.org/10.3923/jest.2015.149.161