DOI QR코드

DOI QR Code

Reactions of 4-Nitrophenyl 2-Thiophenecarboxylates with R2NH/R2NH2+ in 20 mol % DMSO (aq). Effects of 5-Thienyl Substituent and Base Strength

  • Received : 2013.04.01
  • Accepted : 2013.04.10
  • Published : 2013.07.20

Abstract

Reactions of 4-nitrophenyl 2-thiophenecarboxylate (1a-e) with $R_2NH/R_2NH{_2}^+$ in 20 mol % DMSO (aq) have been studied kinetically. The $2^{nd}$ order kinetics, ${\beta}_{nuc}$ = 0.88-0.98, and linear Hammett and Yukawa-Tsuno plots observed for these reactions indicate an addition-elimination mechanism in which the $2^{nd}$ step is rate limiting. The ${\beta}_{nuc}$ value increased with a stronger electron-withdrawing 5-thienyl substituent, the Hammett plots are linear except for X = MeO, and Yukawa-Tsuno plots are linear with ${\rho}$ = 0.79-1.32 and r = 0.28-0.93, respectively. The ${\rho}$ value increased and r value decreased with a stronger nucleophile, indicating an increase in the electron density at the C=O bond and a decrease in the resonance demand. These results have been interpreted with enhanced N-C bond formation in the transition state with the reactivity increase.

Keywords

References

  1. Kirsh, J. F.; Clewell, W.; Simon, A. J. Org. Chem. 1968, 33, 127-136 https://doi.org/10.1021/jo01265a023
  2. Kirsh, J. F.; Kline, A J. Am. Chem. Soc. 1969, 91, 1841-1847. https://doi.org/10.1021/ja01035a041
  3. Campbell, P.; Lapinskas, B. A. J. Am. Chem. Soc. 1977, 99, 5375-5382.
  4. Um, I. H.; Jeon, J. S.; Kwon, D. S. Bull. Korean Chem. Soc. 1991, 12, 406-410.
  5. Um, I. H.; Oh, S. J.; Kwon, D. S. Tetrahedron Lett. 1995, 38, 6903-6906.
  6. Um, I. H.; Oh, S. J.; Kwon, D. S. Bull. Korean Chem. Soc. 1996, 17, 802-807.
  7. Um, I. H.; Min, J. S.; Ahn, J.A.; Hahn, H. J. J. Org. Chem. 2000, 65, 5659-5663. https://doi.org/10.1021/jo000482x
  8. Um, I. H.; Han, H. J.; Ahn, J. A.; Kang, S.; Buncel, E. J. Org. Chem. 2002, 67, 8475-8480. https://doi.org/10.1021/jo026339g
  9. Um, I. H.; Kim, K. H.; Park, H. R.; Fujin, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3937-3942. https://doi.org/10.1021/jo049694a
  10. Um, I. H.; Lee, J. Y.; Lee, H. W.; Nagano, Y.; Fujin, M.; Tsuno, Y. J. Org. Chem. 2005, 70, 4980-4987. https://doi.org/10.1021/jo050172k
  11. Um, I. H.; Lee, J. Y.; Ko, S. H.; Bae, S. K. J. Org. Chem. 2006, 71, 5800-5803. https://doi.org/10.1021/jo0606958
  12. Um, I. H.; Hwang, S. J.; Beck, M. B.; Park, E. J. J. Org. Chem. 2006, 71, 9191-9197. https://doi.org/10.1021/jo061682x
  13. Min, S. W.; Seo, J. A.; Um, I. H. Bull. Korean Chem. Soc. 2009, 30, 2403-2406. https://doi.org/10.5012/bkcs.2009.30.10.2403
  14. Um, I. H.; Im, L. R.; Kim, E. H.; Shin, J. H. Org. Biomol. Chem. 2010, 8, 3801-3806. https://doi.org/10.1039/c0ob00031k
  15. Kang, J. S.; Um, I. H. Bull. Korean Chem. Soc. 2012, 33, 2269- 2273. https://doi.org/10.5012/bkcs.2012.33.7.2269
  16. Jencks, W. P. Catalysis in Chemistry and Enzymology; McGraw-Hill: London, 1969; pp 463-553.
  17. Castro, E. A.; Cubillos, M.; Santos, J. G. J. Org. Chem. 1996, 61, 3501-3505. https://doi.org/10.1021/jo951726u
  18. Castro, E. A.; Cubillos, M.; Santos, J. G.; Tellez, J. J. Org. Chem. 1997, 62, 2152-2517. https://doi.org/10.1021/jo9622789
  19. Castro, E. A. Castro, E. A. J. Org. Chem. 1999, 99, 3505-3524.
  20. Adalsteinsson, H.; Bruice, J. Am. Chem. Soc. 1998, 120, 3440-3447. https://doi.org/10.1021/ja972162+
  21. Baxter, N. J.; Rigorera, L. J. M.; Laws, A. P.; Page, M. I. J. Am. Chem. Soc. 2000, 122, 3375-3385. https://doi.org/10.1021/ja994293b
  22. Deacon, T.; Farra, C. R.; Sikkel, B. J.; Williams, A. J. Am. Chem. Soc. 1978, 100, 2525-2534. https://doi.org/10.1021/ja00476a042
  23. D'Rozario, P.; Smyth, R. L.; Williams, A. J. Am. Chem. Soc. 1984, 106, 5027-5028. https://doi.org/10.1021/ja00329a078
  24. Ba-Saif, S.; Lurthra, A. K.; Williams, A. J. Am. Chem. Soc. 1987, 109, 6362-6368. https://doi.org/10.1021/ja00255a021
  25. Bourne, N.; Chrystiuk, E.; Davis, A. M.; Williams, A. J. Am. Chem. Soc. 1988, 110, 1890-1895. https://doi.org/10.1021/ja00214a037
  26. Williams, A. Acc. Chem. Res. 1989, 22, 387-392. https://doi.org/10.1021/ar00167a003
  27. Stefanidis, D.; Cho, S.; Dhe-Paganon, S.; Jencks, W. P. J. Am. Chem. Soc. 1993, 115, 1650-1656. https://doi.org/10.1021/ja00058a006
  28. Hengge, A. C.; Edens, W. A.; Elsing, H. J. Am. Chem. Soc. 1994, 116, 5045-5049. https://doi.org/10.1021/ja00091a003
  29. Hengge, A. C.; Hess, R. A. J. Am. Chem. Soc. 1994, 116, 11256-11263. https://doi.org/10.1021/ja00104a007
  30. Hess, R. A.; Hengge, A. C.; Cleland, W. W. J. Am. Chem. Soc. 1997, 119, 6980-6983. https://doi.org/10.1021/ja970648k
  31. Guthrie, J. P. J. Am. Chem. Soc. 1991, 113, 3931-3949.
  32. Guthrie, J. P. J. Am. Chem. Soc. 1996, 118, 12878-12885. https://doi.org/10.1021/ja961860b
  33. Tarkka, R. M.; Buncel, E. J. Am. Chem. Soc. 1995, 117, 1503-1507. https://doi.org/10.1021/ja00110a006
  34. Buncel, E.; Um, I. H.; Hoz, S. J. Am. Chem. Soc. 1989, 111, 971-975. https://doi.org/10.1021/ja00185a029
  35. Pregel, M. J.; Dunn, E. J.; Buncel, E. J. Am. Chem. Soc. 1991, 113, 3545-3550. https://doi.org/10.1021/ja00009a049
  36. Bender, M. Chem. Rev. 1960, 60, 53-113. https://doi.org/10.1021/cr60203a005
  37. Okuyama, T.; Lee, J. P.; Ohnish, K. J. Am. Chem. Soc. 1994, 116, 6480-6481. https://doi.org/10.1021/ja00093a077
  38. Okuyama, T.; Takano, H. J. Org. Chem. 1994, 59, 472-476. https://doi.org/10.1021/jo00081a031
  39. McClelland, R. A.; Sandtry, L. J. Acc. Chem. Res. 1983, 16, 394-399. https://doi.org/10.1021/ar00095a001
  40. Perkins, C. W.; Martin, J. C. J. Am. Chem. Soc. 1985, 107, 3209-3218. https://doi.org/10.1021/ja00297a029
  41. Capon, B.; Ghosh, A. K.; Grieve, D. M. A. Acc. Chem. Res. 1981, 14, 306-312. https://doi.org/10.1021/ar00070a003
  42. Um, I. H.; Kim, M. J.; Lee, H. W. Chem. Commun. 2000, 2165-2166.
  43. Jencks, W. P.; Gilchrist, M. J. Am. Chem. Soc. 1968, 90, 2622-2637. https://doi.org/10.1021/ja01012a030
  44. Gresser, M. J.; Jencks, E. P. J. Am. Chem. Soc. 1977, 99, 6963-6970. https://doi.org/10.1021/ja00463a032
  45. Castro, E. A.; Ureta, C. J. Org, Chem. 1990, 55, 1676-1679. https://doi.org/10.1021/jo00292a051
  46. Castro, E. A.; Ibanez, F.; Santos, J. G.; Ureta, C. J. Org, Chem. 1993, 58, 4908-4912. https://doi.org/10.1021/jo00070a028
  47. Castro, E. A.; Ibanez, F.; Santos, J. G.; Ureta, C. J. Chem. Soc., Perkin Trans. 2 1991, 1919-1922.
  48. Um, I. H.; Akhtar, K.; Shin, Y. H.; Han, J. Y. J. Org, Chem. 2007, 72, 3823-3829. https://doi.org/10.1021/jo070171n
  49. Chapman, N. B., Shorter, J., Eds.; J. Advanced in Linear Free Energy Relationships; Plenum: London, 1972.
  50. Um, I. H.; Lee, E. J.; Lee, J. P. Bull. Korean Chem. Soc. 2002, 23, 381-384. https://doi.org/10.5012/bkcs.2002.23.3.381
  51. Lee, C. K.; Yu, J. S.; Lee, H. J. J. Heterocyclic Chem. 2002, 39, 1207-1210. https://doi.org/10.1002/jhet.5570390615
  52. Bell, R. P. The Proton in Chemistry; Methuen: London, U.K., 1959; p 159.
  53. Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 3rd ed.; Harper and Row: New York, 1987; p 144.
  54. Bernasconi, C. F. Techniques of Organic Chemistry; Wiley: New York, 1986; vol 6.
  55. Bond, P. M.; Moodie, R. B. J. Chem. Soc., Perkin Trans. 2 1976, 679-682.
  56. Castro, E. A.; Santander, C. L. J. Chem. Soc., Perkin Trans. 2 1983, 453-457.
  57. Castro, E. A.; Santander, C. L J. Org. Chem. 1985, 50, 3935-3600.
  58. Castro, E. A.; Valdivia, J. L. J. Org. Chem. 1986, 51, 1668-1672. https://doi.org/10.1021/jo00360a007
  59. Brown, H. C.; Okamoto, Y. J. Am. Chem. Soc. 1958, 80, 4979-4987. https://doi.org/10.1021/ja01551a055
  60. Yukawa, Y.; Tsuno, Y. Bull. Chem. Soc. Jpn. 1959, 32, 965-970. https://doi.org/10.1246/bcsj.32.965
  61. Tsuno, Y.; Fujio, M. Chem. Soc. Rev. 1996, 25, 129-139. https://doi.org/10.1039/cs9962500129
  62. Tsuno, Y.; Fujio, M. Adv. Phys. Org. Chem. 1999, 32, 267-385. https://doi.org/10.1016/S0065-3160(08)60009-X

Cited by

  1. OH in 20 mol % DMSO(aq). Effect of Nucleophile on Acyl-Transfer Reaction vol.36, pp.12, 2015, https://doi.org/10.1002/bkcs.10567
  2. Reactions of 2,4‐Dinitrophenyl 5‐substituted‐2‐thiophenecarboxylates with R 2 NH/R 2 NH 2+ in 20 Mol % DMSO(aq). Effects of 5 vol.40, pp.10, 2013, https://doi.org/10.1002/bkcs.11857
  3. Reactions of 4‐NITROPHENYL 5‐substituted Furan‐2‐carboxylates with R 2 NH / R 2 NH 2+ in 20 mol% DMSOhttps://doi.org/10.1002/bkcs.12296