Communications

Toward the Total Synthesis of Amphidinolide O: An Enantioselective Synthesis of C3-C8 Fragment

Min-ho Hwang and Duck-Hyung Lee*
Department of Chemistry, Sogang University, Seoul 121-742, Korea. "E-mail: dhlee@sogang.ac.kr Received March 27, 2013, Accepted April 2, 2013

Key Words: Amphidinolide O, Anti-cancer activity, Ireland-Claisen rearrangement

Amphidinolide O (1) was isolated from the laboratory cultured Okinawan marine dinoflagelate amphidinolium sp. by Kobayashi et al., ${ }^{1}$ and shows in vitro cytotoxicity against murine lymphoma L1210 $\left(\mathrm{IC}_{50}=1.7 \mathrm{mg} / \mathrm{mL}\right)$ and human epidermoid carcinoma KB cells $\left(\mathrm{IC}_{50}=1.6 \mathrm{mg} / \mathrm{mL}\right)$. Amphidinolide $O(\mathbf{1})$ is a medium-sized macrolide with unusual structural features such as seven chiral centers, C5 exomethylene double bond and six-membered ring bridge with hemiacetal moiety. ${ }^{2}$ We already published several papers concerning the synthesis of amphidinolide $\mathrm{O}(\mathbf{1})$, and total synthesis of $\mathbf{1}$ was not reported yet by any other group. ${ }^{3}$ We describe herein the enantioselective synthesis of C3-C8 fragment of amphidinolide O (1).

Retrosynthetic analysis was described in Figure 1. Amphidinolide O (1) might be assembled from two intermediates 2 and 3 via esterification and ring closing metathesis as key steps. Intermediate 4, a precursor to $\mathbf{3}$ as well as the target molecule in this paper, involves the γ, δ-unsaturated ester moiety along with α, β-chiral substituents with anti-stereochemical relationship. Those structural features could be available by Ireland-Claisen rearrangement of the corre-
sponding (E)-enolate derived from the propionate ester 5. The ester 5 was prepared from the commercially available L-(-)-malic acid.

The synthesis of the allyl alcohol $\mathbf{1 0}$ was summarized in Scheme 1. Two carboxylic acid moieties of L-malic acid was reduced easily by borane-dimethyl sulfide complex to produce 1,2,4-butanetriol 6, and selective protection of 1,3-diol moiety over the 1,2-diol moiety was performed successfully by reaction with benzaldehyde dimethyl acetal and PPTS in 82% two-step yield. ${ }^{4}$ After the primary alcohol 7 was oxidized using Swern protocol, ${ }^{5}$ the resulting aldehyde $\mathbf{8}$ was subjected to Horner-Wadsworth-Emmons olefination reaction to provide the conjugated ester 9 in 67% two-step yield. ${ }^{6}$ The ethyl ester 9 was then reduced by DIBAL-H at $-78^{\circ} \mathrm{C}$ to give the primary allyl alcohol $\mathbf{1 0}$ in 82% yield.

Synthesis of ester 4 was completed via 6 -step sequence from allyl alcohol $\mathbf{1 0}$ (Scheme 2). The primary alcohol $\mathbf{1 0}$ was treated with p-methoxybenzyl chloride and sodium hydride to afford the PMB ether 11 in 98% yield. The acetal moiety of $\mathbf{1 1}$ was removed quantitatively by CSA in aqueous methanol and the primary hydroxyl group of the resulting

Amphidinolide O (1)
 L-(-)-Malic acid

3

Figure 1. Retrosynthetic analysis.

Scheme 1. Synthesis of allyl alcohol 10.

10

Scheme 2. Synthesis of methyl ester 4.
diol 12 was protected selectively using TBSCl-TEA combination to provide the secondary alcohol 13 in 87% yield. The intermediate 5, a key precursor for the Ireland-Claisen rearrangement, ${ }^{7}$ was prepared by reaction of 13 with propionyl chloride, TEA, and DMAP in 64% yield.
Two chiral centers in $\mathbf{1 4}$ were installed from the C 7 chiral center in $\mathbf{5}$ via Ireland-Claisen rearrangement. In other words, intermediate 5 was treated with LiHMDS and TBSCl in THF at $-78{ }^{\circ} \mathrm{C}$ to give the (E)-enolate selectively, which undergoes Claisen rearrangement stereoselectively at room temperature to afford the carboxylic acid $\mathbf{1 4}$ with the correct relative stereochemistries in 67% yield. ${ }^{7}$ Finally, the methyl ester 4 was prepared by methylation of the corresponding carboxylate with iodomethane and potassium carbonate in 83% yield. ${ }^{8}$
The relative configuration of the methyl ester 4 was confirmed as follows. Treatment of $\mathbf{4}$ with DDQ in a biphasic mixture of pH 7 buffer solution and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ allowed the deprotection of the PMB protecting group and spontaneous cyclization to the lactone 15 . The ${ }^{1} \mathrm{H}-\mathrm{NOE}$ experiment clearly showed the relative stereochemistry of $\mathbf{1 5}$, and therefore the methyl ester 4 as drawn in Scheme 2 and 3.
In summary, the methyl ester 4, a C3-C8 fragment of amphidinolide O (1), was prepared enantioselectively via 11 steps in 14% overall yields. The diastereoselective Ireland-

Scheme 3. Synthesis of lactone 15.

Claisen rearrangement of 5 via the corresponding (E)-enolate intermediate was used as a key step in order to implement the C 4 and C 5 chiral centers.

Acknowledgments. This research was assisted financially by National Research Foundation of Korea (NRF-20100026141). The instrument facilities of the Organic Chemistry Research Center (OCRC) in the chemistry department were also helpful.

References

1. (a) Kobayashi, J.; Ishibashi, M. Chem. Rev. 1993, 93, 1753-1769.
(b) Chakraborty, T. K.; Das, S. Curr. Med. Chem.: Anti-Cancer Agents 2001, 1, 131-149. (c) Kobayashi, J.; Tsuda, M. Nat. Prod. Rep. 2004, 21, 77-93. (d) Kobayashi, J.; Kubota, T. J. Nat. Prod. 2007, 70, 451-460. (e) Morris, J. C.; Phillips, A. J. Nat. Prod. Rep. 2009, 26, 245-265. (f) Fuerstner, A. Isr. J. Chem. 2011, 51, 329345.
2. Ishibashi, M.; Takahashi, M.; Kobayashi, J. J. Org. Chem. 1995, 60, 6062-6066.
3. (a) Pang, J. H.; Lee, D. H. Bull. Korean Chem. Soc. 2002, 23, 1173-1176. (b) Pang, J. H.; Ham, Y. J.; Lee, D. H. Bull. Korean Chem. Soc. 2003, 24, 891-892. (c) Jang, M. Y.; Kim, J. W.; Lee, D. H. Bull. Korean Chem. Soc. 2005, 26, 1497-1498. (d) Kim, J. W.; Kong, S. J.; Kim, Y. J.; Lee, D. H. Bull. Korean Chem. Soc. 2008, 29, 297-298. (e) Joo, H. W.; Jung, H. J.; Hwang, M. H.; Lee, D. H. Bull. Korean Chem. Soc. 2009, 30, 2201-2202.
4. Flögel, O.; Amombo, M. G. O; Reißig, H.; Zahn, G.; Brüdgam, I.; Hartl, H. Chem. Eur. J. 2003, 9, 1405-1415.
5. Huang, S. L.; Swern, D. J. Org. Chem. 1978, 43, 4537-4538.
6. Ozawa, T.; Aoyagi, S.; Kibayashi, C. Org. Lett. 2000, 2, 29552958.
7. (a) Ireland, R. E.; Mueller, R. H.; Willard, A. K. J. Am. Chem. Soc. 1976, 98, 2868-2877. (b) Corey, E. J.; Lee, D. H. J. Am. Chem. Soc. 1991, 113, 4026-4028.
8. Spectroscopic data of methyl ester 4. $R_{f} 0.57(1: 4=\mathrm{EtOAc} /$ Hexane $)$; IR (neat, cm^{-1}): 2953, 2857, 2254, 1734, 1639, 1612, 1587, 1514, $1463,1361,1302,1249,1204,1173,1096,1038,971,835,776$; $[\alpha]_{\mathrm{D}}^{25}=40.5\left(c 0.35, \mathrm{CHCl}_{3}\right)^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.55-$ $5.38(\mathrm{~m}, 2 \mathrm{H}), 4.40(\mathrm{br}, \mathrm{s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.589(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 3.588(\mathrm{~s}, 3 \mathrm{H}), 2.72-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{q}$, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.09(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl3, 100 MHz$) \delta 176.0,131.6,129.9,129.1$, $128.8,114.1,113.4,72.9,70.9,63.3,55.5,55.3,41.2,40.3,36.5$, 26.1, 18.5, -4.5, -5.0; HRMS (m / z) calcd for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{NaO}_{5} \mathrm{Si}$ $[\mathrm{M}+\mathrm{Na}]^{+} 459.2543$, found 459.2543 .
