DOI QR코드

DOI QR Code

Seed Transmission Rates of Bean pod mottle virus and Soybean mosaic virus in Soybean May Be Affected by Mixed Infection or Expression of the Kunitz Trypsin Inhibitor

  • Nam, Moon (Department of Applied Biology, Chungnam National University) ;
  • Bae, Hanhong (School of Biotechnology, Yeungnam University) ;
  • Hammond, John (Floral and Nursery Plants Research Unit, United States Department of Agriculture-Agricultural Research Service) ;
  • Domier, Leslie L. (Department of Crop Sciences University of Illinois) ;
  • Youn, Young-Nam (Department of Applied Biology, Chungnam National University) ;
  • Lee, Bong-Choon (Crop Environment Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Lim, Hyoun-Sub (Department of Applied Biology, Chungnam National University)
  • Received : 2013.05.15
  • Accepted : 2013.06.04
  • Published : 2013.06.30

Abstract

To facilitate their spread, plant viruses have developed several methods for dispersal including insect and seed transmission. While insect transmission requires virus stability against insect digestion, seed-transmitted viruses have to overcome barriers to entry into embryos. Bean pod mottle virus (BPMV) is transmitted through seed at levels typically below 0.1%, but co-infection with Soybean mosaic virus (SMV) enhanced the seed transmission rate of BPMV in one experiment. In contrast, the rate of SMV seed transmission was not affected by BPMV co-infection. In a second preliminary study, the rate of SMV transmission was lower in an isoline of Williams 82 that contained a null mutation for the Kunitz trypsin inhibitor gene than in Williams 82. In this preliminary study, we observed that factors such as protease inhibitor expression and dual infection may affect the frequency of seed transmission of BPMV and SMV.

Keywords

References

  1. Anjos, J. R., Jarlfors, U. and Ghabrial, S. A. 1992. Soybean mosaic potyvirus enhances the titer of two comoviruses in dually infected soybean plants. Phytopathology 82: 1022-1027. https://doi.org/10.1094/Phyto-82-1022
  2. Blanc, S., Lopez-Moya, J. J., Wang, R., Garcia-Lampasona, S., Thornbury, D. W. and Pirone, T. P. 1997. A specific interaction between coat protein and helper component correlates with aphid transmission of a potyvirus. Virology 231: 141-147. https://doi.org/10.1006/viro.1997.8521
  3. Blanc, S., Ammar, E. D., Garcia-Lampasona, S., Dolja, V. V., Llave, C., Baker, J. and Pirone, T. P. 1998. Mutations in the potyvirus helper component protein: effects on interactions with virions and aphid stylets. J. Gen. Virol. 79: 3119-3122. https://doi.org/10.1099/0022-1317-79-12-3119
  4. Bos, L. 1972. Soybean mosaic virus. No. 93 in Descriptions of Plant Viruses. Commonw. Mycol. Inst., Assoc. Appl. Biologists, Kew, Surrey, England.
  5. Bowers, G. R. 1977. Seed transmission of Soybean mosaic virus. M.S. Thesis, University of Illinois, Urbana.
  6. Bowers, G. R. and Goodman, R. M. 1991. Strain specificity of Soybean mosaic virus seed transmission in soybean. Crop Sci. 31: 1171-1174. https://doi.org/10.2135/cropsci1991.0011183X003100050019x
  7. Cho, E. K. and Chung, B. J. 1976. Studies on identification and classification of soybean virus disease. Korean J. Plant Prot. 15: 61-68. (In Korean)
  8. Cho, E. K., Chung, B. J. and Lee, S. H. 1977. Studies on identification and classification of soybean virus diseases in Korea. II. Etiology of a necrotic disease of Glycine max. Plant Dis. Rep. 61: 313-317.
  9. Clark, A. J. and Perry, K. L. 2002. Transmissibility of field isolates of soybean viruses by Aphis glycines. Plant Dis. 86: 1219-1222. https://doi.org/10.1094/PDIS.2002.86.11.1219
  10. Cronin, S., Verchot, J., Haldeman-Cahill, R., Schaad, M. C. and Carrington, J. C. 1995. Long-distance movement factor: A transport function of the potyvirus helper component proteinase. Plant Cell 7: 549-559. https://doi.org/10.1105/tpc.7.5.549
  11. Friedman, M., Brandon, D., Bates, A. and Hymowitz, T. 1991. Comparison of a commercial soybean cultivar and an isoline lacking the kunitz trypsin inhibitor: Composition, nutritional value, and effects of heating. J. Agric. Food Chem. 39: 327-335. https://doi.org/10.1021/jf00002a022
  12. Goldberg, R. B., Hoschek, G., Ditta, G. S. and Breidenbach, R. W. 1981. Developmental regulation of cloned superabundant embryo mRNA in soybean. Dev. Bio. 83: 218-231. https://doi.org/10.1016/0012-1606(81)90468-1
  13. Gu, H., Clark, A. J., Pfeiffer, T. W., Tolin, S. and Ghabrial, S. A. 2002. Diversity among isolates of bean pod mottle virus. Phytopathology 92: 446-452. https://doi.org/10.1094/PHYTO.2002.92.4.446
  14. Hill, J. H., Alleman, R., Hogg, D. B. and Grau, C. R. 2001. First report of transmission of Soybean mosaic virus and Alfalfa mosaic virus by Aphis glycines in the new world. Plant Dis. 85: 561.
  15. Hobbs, H. A., Hartman, G. L., Wang, Y., Hill, C. B., Bernard, R. L., Pedersen, W. L. and Domier, L. L. 2003. Occurrence of seed coat mottling in soybean plants inoculated with Bean pod mottle virus and Soybean mosaic virus. Plant Dis. 87: 1333- 1336. https://doi.org/10.1094/PDIS.2003.87.11.1333
  16. Hymowitz, T. 1986. Genetics and breeding of soybeans lacking the Kunitz trypsin inhibitor. In: Nutritional and toxicological significance of enzyme inhibitors in foods, ed. by Friedman, M., pp. 291-298. Plenum Press, New York.
  17. Johansen, I. E., Dougherty, W. G., Keller, K. E., Wang, D. and Hampton, R. O. 1996. Multiple viral determinants affect seed transmission of pea seedborne mosaic virus in Pisum sativum. J. Gen. Virol. 77: 3149-3154. https://doi.org/10.1099/0022-1317-77-12-3149
  18. Jossey, S. 2012. Role of virus genes in seed and aphid transmission and development of a virus-induced gene silencing system to study seed development in soybean. Ph.D. thesis. University of Illinois, Urbana, USA.
  19. Lim, H. S., Jang, C., Bae, H., Kim, J., Lee, C., Hong, J., Ju, H., Kim H. and Domier, L. L. 2011. Soybean mosaic virus infection and helper component-protease enhance accumulation of bean pod mottle virus-Specific siRNAs. Plant Pathology J. 27: 315-323. https://doi.org/10.5423/PPJ.2011.27.4.315
  20. Lin, M. T. and Hill, J. H. 1983. Bean pod mottle virus: occurrence in Nebraska and seed transmission in soybeans. Plant Dis. 67: 230-233. https://doi.org/10.1094/PD-67-230
  21. McGrain, A. K., Chen, J. C., Wilson, K. A. and Tan-Wilson, A. 1992. Proteases catalysing processing and degradation of kunitz soybean trypsin inhibitor during seed maturation. Phytochem. 31: 421-426. https://doi.org/10.1016/0031-9422(92)90010-N
  22. Pruss, G., Ge, X., Shi, X. M., Carrington, J. C. and Vance, V. B. 1997. Plant viral synergism: The potyviral genome encodes a broad-range pathogenicity enhancer that transactivates replication of heterologous viruses. Plant Cell 9: 859-868. https://doi.org/10.1105/tpc.9.6.859
  23. Rojas, M. R., Zerbini, F. M., Allison, R. F., Gilbertson, R. L. and Lucas, W. J. 1997. Capsid protein and helper componentproteinase function as potyvirus cell-to-cell movement proteins. Virology 237: 283-295. https://doi.org/10.1006/viro.1997.8777
  24. Ross, J. P. 1986. Response of early- and late-planted soybeans to natural infection by bean pod mottle virus. Plant Dis. 70: 222-224. https://doi.org/10.1094/PD-70-222
  25. Ryan, C. A. 1981. Proteinase inhibitors. In: Biochemistry of plants. ed by A. Marcus. New York, Academic Press, Vol. 6. pp. 351-370.
  26. Varrelmann, M., Maiss, E., Pilot, R. and Palkovics, L. 2007. Use of pentapeptide-insertion scanning mutagenesis for functional mapping of the plum pox virus helper component proteinase suppressor of gene silencing. J. Gen. Virol. 88: 1005-1015. https://doi.org/10.1099/vir.0.82200-0
  27. Walling, L., Drews, G. N. and Goldberg, R. B. 1986. Transcriptional and post-transcriptional regulation of soybean seed protein mRNA levels. Proc. Natl. Acad. USA 83: 2123-2127. https://doi.org/10.1073/pnas.83.7.2123

Cited by

  1. Effects of single and mixed infections ofBean pod mottle virusandSoybean mosaic viruson host-plant chemistry and host-vector interactions vol.30, pp.10, 2016, https://doi.org/10.1111/1365-2435.12649